Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Automatic tolerancing"

Article category

Keywords

Publication year

Authors

"Automatic tolerancing"

Article
Development and Case Studies of a Function-Based Method for Geometric Tolerance Design
Ho Jae Ahn, Hyunjune Yim
J. Korean Soc. Precis. Eng. 2018;35(4):433-442.
Published online April 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.4.433
In order to help design engineers to adopt the Geometric Dimensioning & Tolerancing (GD&T), this paper develops a stepby-step method for tolerance design based on the function of the product and its parts. The procedure of this method consists of (1) analysis of functions using Key Characteristics (KC) and Datum Flow Chain (DFC), (2) selection of datum features, and (3) the selection of geometric tolerance types based on the functions. The rules and guidelines for the two latter steps are given and explained in detail, in order that the design engineer can understand the reasons for the rules and use them effectively. The method presented in this paper differs from other previous work, as it is based on the functions, whereas we note that previous work typically focuses on the automation of the tolerancing task without due consideration of functions. The paper also illustrates the developed method through two case studies: an axle-wheel assembly model and a simplified refrigerator model. This geometric tolerance design method is not complete yet in the coverage of various tolerances, e.g. size tolerances and profile, but may assist the beginning design engineer developing a mastery over GD&T.

Citations

Citations to this article as recorded by  Crossref logo
  • An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door
    Nam-Yeoung Jeoung, Jin-Hyung Cho, Hyun-Seung Oh, Sae Jae Lee
    Journal of Society of Korea Industrial and Systems Engineering.2018; 41(4): 91.     CrossRef
  • 9 View
  • 0 Download
  • Crossref