Catheter tip forming is processing the tip at the distal end so that catheter can move smoothly through the geometrically complex vascular structure. This thermoforming process has a problem in that the polymer tube adheres to the outer surface of the mold. To resolve this problem, previous researchers have coated the outer surface of the mold with PTFE (Polytetrafluoroethylene), which has a low coefficient of friction. However, due to repeated use, the coating is detached and the polymer tube adheres to the mandrels again, and the mold is frequently replaced. Thus, in this study, three types of metal were electroplated on the surface of the mold in to realize the performance of the PTFE coating. To select the optimal plating material, Cr, Zn, and Ni were selected as candidate groups. Surface energy, adhesion force, and abrasion depth & volume were measured for performance comparison. As a result, Ni, which has similar surface properties to PTFE, and the best durability, was selected as the optimal material. Based on these results, we present Ni-plated mold that can replace PTFE.
Spin coaters are the essential instruments in micro-fabrication processes, which apply uniform thin films to flat substrates. In this research, a spin coater diagnosis system is developed to detect the abnormal operation of TFT-LCD process in real time. To facilitate the real-time data acquisition and analysis, the circular-buffered continuous data transfer and the short-time Fourier transform are applied to the fault diagnosis system. To determine whether the system condition is normal or not, a steady-state detection algorithm and a frequency spectrum comparison algorithm using confidence interval are newly devised. Since abnormal condition of a spin coater is rarely encountered, algorithm is tested on a CD-ROM drive and the developed program is verified by a function generator. Actual threshold values for the fault detection are tuned in a spin coater in process.