This study presents results of Computational fluid dynamics (CFD) analysis conducted to evaluate performances of various functional products developed for smart bathroom systems. The primary objective was to analyze the efficiency of space heating, direct drying, and dehumidification functions in a winter bathroom environment. Representative bathroom models in South Korea were selected and detailed CFD simulations were performed on these models. Results showed that bathtub models exhibited higher efficiency overall in space heating and dehumidification than shower booth models. This was attributed to differences in bathroom structure and internal air flow. Additionally, the direct drying function showed higher efficiency in bathtub models, determined by the placement of air outlets and inlets. This study provides essential foundational data that can contribute to the design and enhancement of smart bathroom systems' functionality, offering valuable insights for the development of optimized smart bathroom products.
Air brake valves are widely used in automotive braking systems and the Korean automobile industry depends on importing them. Therefore, we should develop the technical expertise for their domestic production. In this study, air brake valves were analyzed that can be used in a variety of automobiles. Computational fluid dynamics analysis, static structural analysis, and hyper-elastic analysis were carried out. Before production of an air brake valve system, the performance of different parts has to be evaluated, for instance by using finite element analysis. The structural stability of the product can be determined using static dynamics. The compression behavior of the O-ring is predictable by nonlinear hyper elastic analysis, although errors are possible due to one-way loading. This simulation study can both save time and reduce costs compared to the development of experimental prototypes.