In this study, a new method of bonding CFRP and Al6061-T6 with epoxy adhesive after shot-peening treatment on the surface of Al6061-T6 specimens was proposed to improve bonding strength of a single lap joint between CFRP and Al6061-T6. More specifically, correlation between shot peening coverage on the Al6061-T6 surface and bonding strength with CFRP was experimentally analyzed. Experimental results showed that the surface roughness and the bonding strength increased as the peening time on the surface of Al6061-T6 increased up to a specific peening time (or coverage). However, the surface roughness and bonding strength decreased again under an over-peening condition of 480 seconds (300% coverage) or more. Therefore, it is necessary to search for the optimal peening time that can maximize bonding strength as well as the fatigue life of parts at a peening time between 320 (200%) and 480 s (300%) through additional experiments in future studies.
CFRP (Carbon Fiber Reinforced Plastic) is a composite material formed using carbon fibers and epoxy resin matrices. It has low productivity and suffers from machining defects during precision machining. Laser machining of CFRP is associated with the problem of heat damage to the epoxy resin. EDM of CFRP can process various shapes with a shaped tool, however it has a lower material removal rate compared to laser, and the non-conductive epoxy resin layer on the surface must be removed before EDM processing. In this study, we have proposed a laser EDM hybrid machining in which CFRP was pre-processed with a laser and then post-processed by EDM. The laser pre-processing conditions were selected by adjusting the laser power and the number of repetitions to minimize thermal damage. According to EDM conditions, the size of the thermal damage area occurring in the epoxy resin, the change in the side gap, and the change in the processing time were investigated. Using the hybrid processing, micro-holes with a diameter of 150 μm were machined, and square-shaped micro-holes were also machined. To improve productivity, a multi-tool capable of processing four square shapes was manufactured, and multi-processing was performed.
Citations
Citations to this article as recorded by
Fabrication of micro holes with confined pitting corrosion by laser and electrochemical machining: Pitting corrosion formation mechanisms and protection method Jian Yang, Yufeng Wang, Yong Yang, Yunfeng Liu, Wenwu Zhang Journal of Materials Processing Technology.2025; 335: 118677. CrossRef
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
The adhesive bonding technology of carbon fiber reinforced plastics (CFRP) and aluminum alloys, is one of the lightweight joining technologies for automobiles. The strength and properties of the bonded joint, depend on the surface of the bonded part that the adhesive touches. Thus, proper surface treatment is one of the most important steps in the bonding process. The laser surface treatment of carbon fiber composites is a new form of green and environmental surface treatment technology, which can effectively clean coatings and pollutants on the surface of materials. It is also possible to improve the bonding shear strength, by changing the microstructure and roughness of the material surface through laser micro texture processing, to form a mechanically interlocked structure. In this study, a pulsed laser was used to treat the surface of CFRP. By changing the scanning line spacing during laser micro texturing, the effect of laser micro texturing on the surface morphology of CFRP and the strength of aluminum alloy bonded joints was investigated. Results show that in the laser micro texturing process, when the scanning line spacing was 0.3 mm, the maximum tensile shear strength was 14.5 MPa, approximately 200% higher than that without laser treatment.
A fixing frame applied with Foam Cored CFRP Sandwich Composite (FCCSC) that replaces SAPH440 steel used in the fixing frame for hydrogen storage was designed, and its structural safety was evaluated. In the design of the fixing frame, FCCSC was implemented by PMI foam core, a Bakelite mount, and Carbon Fiber Reinforced Plastics (CFRP) using woven carbon fiber prepreg. Unlike the steel fixing frame, the FCCSC-applied fixing frame had a cross-section of hollow-rectangular, and its validity was confirmed through finite element analysis. Structural analysis of the designed FCCSCapplied fixing frame and steel fixing frame was performed. Under the extreme load condition of 9G acceleration, the steel fixing frame showed the lowest safety factor of 1.14 based on the yield strength in the opposite direction of gravity. On the other hand, the FCCSC-applied fixing frame showed a safety factor of 7.6 at the maximum principal stress and 3.15 at the shear stress. Through this result of structural analysis, it was verified that the FCCSC-applied fixing frame, which was 25.8% lighter than the steel fixing frame, was 1.8 times safer.
CFRP (Carbon fiber reinforced plastic) has been widely used in different industries such as aerospace, automobile, sports and medical. Laser processing of CFRP has a great potential for industrial applications. In this paper researched the micro cutting and drilling of CFRP with 0.5 mm thickness using 1064 nm ytterbium nanosecond pulsed fiber laser. It also investigated machining characteristics of micro cutting and drilling according to laser power, frequency, scan speed and number of scan (or irradiation). Complete cutting and through-hole drilling were achieved with low frequency when the laser power was low and with low and middle frequency when the laser power increased. However, those were not achieved a frequency of 100 kHz. The cutting width increased when the power increased and decreased when the frequency and the scan speed increased. The hole size increased when the power and the number of irradiation increased and decreased when the frequency increased. In the case of micro hole array, the hole was blocked during the next hole machining when the hole spacing was narrow. The resin was melted by the heat thus blocking the pre-drilled hole. We devised the laser scan method, and the micro hole array with narrow hole spacing was fabricated successfully.
Citations
Citations to this article as recorded by
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
Laser EDM Hybrid Micro Machining of CFRP Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park Journal of the Korean Society for Precision Engineering.2023; 40(2): 99. CrossRef
Micro Pin Fabrication of Tungsten Carbide Using Polycrystalline Diamond Joo A Park, Ui Seok Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2020; 37(11): 791. CrossRef
Transportation machine manufacturers are putting in efforts on research based on weight reduction. One of the representative materials for weight reduction is Fiber Reinforced Plastic (FRP). Increased used of FRP, glass fiber and carbon fiber could be a way of weight reduction. It is almost unavoidable to generate holes or notches during structural design. Little research have been carried out based on cracks with respect to materials used for design. The utilization of finite element analysis and the reliability of the analysis methods are increasing in order to promptly cope with the damages in materials. In this study, Compact Tension (CT) model based on ASTM E647 was designed using SM45C, steel for structural use, short fiber Glass Fiber Reinforced Plastic (GFRP), and woven type Carbon Fiber Reinforced Plastic (CFRP). In addition, J-Integral, which is a factor for determination of growth of crack that appears in cracks, was applied to general structure analysis. J-Integral is an equation of the body force of the material and strain energy in accordance with the loading force, and illustrates the crack growth using energy release rate. J-Integral values of SM45C, short fiber GFRP and woven type CFRP were found to be approximately 74,978 mJ/mm², 7492.3 mJ/mm² and 6222.4 mJ/mm², respectively.
Since becoming highly functional, complex and flexible, the machining system of CFRP(Carbon Fiber Reinforced Plastic) has recently become highly functional, complex and flexible, its has its controllers are changing into open and distributed structures. These, and need controlling to be controlled to maintain good quality of for a quality of machined parts. In particularSpecifically, an open controller is required urgently needed to apply the optimal processing program for each material and development of embedded SW, which enables after-production of CFRP, CFRP-metal stack material, waterjet processing, inspection, and modification. As theThe characteristics of CFRP materials may create processing defects such as stratified material stripping and un-cut., a A process monitoring module that can minimize or prevent the defects this technology needs to should be applied to hence reducinge tool wear causedthrough by high hardness carbon fiber. Since CFRP is mostly made from additive forming, there are many drilling processes, that require precision measurement techniques and process signal monitoring technology, exist. Tsince the cutting force load and various signals generated during processing are weaker than those during metal processing. An open controller for process control and monitoring of a CFRP processing system was therefore developed. The system will then It is going to develop open controller SW structural design and open platform, multi-channel signal processing algorithm and sensor system, process specific functions (CFRP process control, boundary detection, etc.) and mount drilling tool parent monitoring algorithm on open platform.
Citations
Citations to this article as recorded by
Comparative Analysis and Monitoring of Tool Wear in Carbon Fiber Reinforced Plastics Drilling Kyeong Bin Kim, Jang Hoon Seo, Tae-Gon Kim, Byung-Guk Jun, Young Hun Jeong Journal of the Korean Society for Precision Engineering.2020; 37(11): 813. CrossRef
Transportation industries, such as aerospace and automotive demand high efficiency using lightweight parts. Carbon Fiber Reinforced Plastics (CFRP) present promising materials for transportation industry parts due to their lightweight and highstrength properties. Forming and machining processes are required to manufacture parts from carbon fiber composite materials. The near-net shaping process forms the parts, and the final accurate shape and hole are accomplished using the machining process. However, high-strength carbon fiber chips and dust from the machining process cause cutting tool wear and low productivity. The hybrid CRD (Cutting, Routing and Drilling)/water-jet machine improves tool life and productivity because its water-jet process, employed before the mechanical machining process cuts roughly without chips and dust. In this study, the hybrid CRD/water-jet machine we developed was introduced and its machining performance was evaluated using a drilling process. The delamination factor and surface roughness of drilled holes were compared with the results from a conventional machine tool.
Citations
Citations to this article as recorded by
Effect of Vacuum Suction on Dust and Exit Burr Removal in FRP Drilling Jong-Hyun Baek, Su-Jin Kim Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(11): 29. CrossRef
Multistep Workpiece Localization with Automated Symmetry Identification for Aerospace Carbon Fiber Reinforced Plastic Components Minh Duc Do, Mingeon Kim, Duy Hung Nguyen, Soonyoung Han, Van Huan Pham, Hae-Jin Choi International Journal of Precision Engineering and Manufacturing-Green Technology.2022; 9(4): 1133. CrossRef
Drill bit with clip-edges based on the force control model for reducing the CFRP damage Jiaxuan Hao, Fuji Wang, Meng Zhao, Yu Bai, Zhenyuan Jia Journal of Reinforced Plastics and Composites.2021; 40(5-6): 206. CrossRef