Recently, industrial manufacturing has developed into additive manufacturing, benefiting from multi-item small-sized production and effective manufacturing. Importantly, Wire Arc Additive Manufacturing, which uses metal wires, is attracting worldwide attention for its high-quality metal product technology. Technological innovation that combines virtual physics with reality through big data communication, such as process variables along with Wire Arc Additive Manufacturing, is an essential task for implementing smart manufacturing technology. Due to the characteristic of Wire Arc Additive Manufacturing, numerous variable conditions exist, making it difficult to standardize robot"s process path data generation algorithms and data application methods, and this data generation method is being studied as a core element technology. The present study generated foundation process implementation, simulation, and generated path data for robots in virtual space using RoboDK, which provides robot libraries from multiple manufacturers, and Python, which is a universal programming language. To implement the experimental data in practice, ABB"s industrial six-axis robots IRB-6700 and Fronius TPS500i were used to control the arcing plasma heat source, and the process path worked the same as simulation. Based on the underlying experimental results, this process can be applied to generation of additive manufacturing in the Wire Arc Additive Manufacturing process for 3D models.
Citations
Citations to this article as recorded by
Artificial Intelligence Technologies and Applications in Additive Manufacturing Selim Ahamed Shah, In Hwan Lee, Hochan Kim International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463. CrossRef
In-situ remanufacturing of forging dies for automobile parts based on wire arc directed energy deposition Chang Jong Kim, Chan Kyu Kim, Hui-Jun Yi, Seok Kim, Young Tae Cho Journal of Mechanical Science and Technology.2024; 38(9): 4529. CrossRef