Durability evaluations were conducted using polymer electrolyte membrane fuel cells in a marine environment. Deionised water and 3.5 wt% of NaCl solution were supplied to the cathode using an ultrasonic vibrator. Performance and electrochemical impedance spectroscopy of fuel cells were measured to evaluate the electrochemical behaviors. Additionally, long-term stability evaluations of PEMFCs were carried out at 0.65 V for 20 h. Following the experiments, scanning electron microscope analysis was conducted to confirm the presence of NaCl on membrane electrode assembly and micro porous layer of fuel cells.
Citations
Citations to this article as recorded by
Effects of NaCl Solution on Proton Exchange Membrane Fuel Cell with Serpentine Flow Channel of Different Depths Dong Kun Song, Ho Jun Yoo, Jung Soo Kim, Ki Won Hong, Do Young Jung, George Ilhwan Park, Gu Young Cho Journal of the Korean Society for Precision Engineering.2025; 42(5): 399. CrossRef
Evaluation of Electrochemical Performance of PEMFCs with Decontamination Devices at Marine Environments Ye rim Kwon, Ho Jun Yoo, Byung Gyu Kang, Ki Won Hong, Sun Ki Kwon, Sanghoon Lee, Gu Young Cho Journal of the Korean Society for Precision Engineering.2025; 42(1): 57. CrossRef
A Study of Effects of the Repetition of Assembly and the Addition of Activation on Electrochemical Characteristics of PEMFCs Ji Woong Jeon, Gye Eun Jang, Young Jo Lee, Dong Kun Song, Ho Jun Yoo, Seung Hyeok Hong, Jung Soo Kim, Ye Rim Kwon, Da Hye Geum, Gu Young Cho Journal of the Korean Society for Precision Engineering.2023; 40(11): 867. CrossRef
A Study on Electrochemical Resistance Change through the Pressurization Process of MEA for PEMFC Ye Rim Kwon, Dong Kun Song, Ho Jun Yoo, Gye Eun Jang, Young Jo Lee, Jung Soo Kim, Ji Woong Jeon, Da hae Guem, Gu Young Cho Journal of the Korean Society for Precision Engineering.2023; 40(7): 539. CrossRef