A compositional library of Ag-Ti thin films was fabricated using combinatorial RF magnetron sputtering. The films exhibited a gradual compositional gradient across the substrate, ranging from Ag-rich to Ti-rich compositions. SEM analysis revealed a uniform thickness of approximately 150 nm for all films. The relationship between composition and properties was investigated, demonstrating that increasing Ag content led to decreased resistivity and increased density. These results can be attributed to the high electrical conductivity and density of Ag. To optimize SAW device performance, a balance between resistivity and density must be achieved. While Ag-rich films offer higher electrical conductivity, they may experience reduced inverse piezoelectric effects due to increased density. Conversely, Ag-poor films may have improved inverse piezoelectric effects but reduced electrical conductivity.