Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Composite materials"

Article category

Keywords

Publication year

Authors

"Composite materials"

Articles
A Study on Creep Phenomenon after the Releasing of Injection Molded Articles
Yu Jung Kim, Hee-Seon Bang
J. Korean Soc. Precis. Eng. 2023;40(8):639-645.
Published online August 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.011
Recently, with the expansion of application of polymer composite materials, high levels of deformation compensation actions have been developed. However, there is a problem of high-temperature viscoelasticity that occurs over time after completing the injection molding process. In this study, changes of mechanical properties of the Moldflow program for injection molding were analyzed to verify the viscoelasticity phenomenon through deformation analysis. In addition, deformation analysis of plastic injection molded products according to arrangement of three ribs was conducted and two products with different geometric shapes of the same function were compared. As a result, it was possible to reflect the viscoelastic effect by reducing the elastic modulus and shear modulus of the material. It was confirmed that the geometric shape with thick ribs formed in multiple longitudinal directions was mainly responsible. On the surface of the product where the rib arrangement was parallel and perpendicular to the flow direction, the orientation was orthogonal to the linear direction and the maximum residual stress was 81.17 MPa, which showed the largest value. It was judged that viscoelastic phenomena could be predicted and that an arrangement of parallel and perpendicular ribs that might intersect should be avoided.
  • 7 View
  • 0 Download
A Study on the Smart Design and Cooling Performance of Electric Vehicle Motor Using Metal-Hybrid Materials
Sung-Hwan Bang, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):595-603.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.039
The aim of this study is to numerically investigate the cooling performance of the electric vehicle motor depending on the attachment of the heat sink and materials to the cooling channel. The research focused on the numerical comparison of forced convective heat transfer coefficients with case 1 (Heat Sink-None, Cooling Channel-Al), case 2 (Heat Sink-None, Cooling Channel-Metal Hybrid Material), case 3 (Heat Sink-4EA, Cooling Channel-Al), and case 4 (Heat Sink-6EA, Cooling Channel-Al). To compare the cooling performance for novel design of the smart cooling system, selected local positions for various temperature distributions were marked on the coil surface. Normalized local Nusselt number of the cooling area at the normalized width position indicated that cooling performance of case 1 was on an average 8.05, 0.57, and 5.85% lower than that of cases 2, 3, and 4, respectively.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • 9 View
  • 0 Download
  • Crossref