Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Concrete"

Article category

Keywords

Publication year

Authors

"Concrete"

Articles
Manufacturing Automation System of Freeform Concrete Formwork Using S-LOM Method
Joonhyeok Sim, Hakmin Kim, Kyunwoo Park, Chanwoo Kim, Daehie Hong
J. Korean Soc. Precis. Eng. 2020;37(1):43-50.
Published online January 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.125
The number of freeform buildings has been continuously increasing, serving as a landmark representing a country or a city. However, most of the freeform buildings have been built with conventional construction methods and required a tremendous amount of construction cost. This study seeks to apply additive manufacturing technologies to the freeform concrete formwork. Among many additive manufacturing techniques, the study focuses on the Laminated Object Manufacturing (LOM) method because of its advantages on building speed and cost. Also, the LOM technique is modified by using sloped angle at the side surface of the laminated layer (called Sloped-LOM or S-LOM), which yields great increase in the accuracy. We built a new FreeForm Formwork 3D Printer (named F3D printer) using the new approach. The F3D printer consists of a 5-axis laser cutting device for sloped cutting of EPS (Expanded Poly-Styrene) sheets with high speed, an auto pallet changer for EPS feeding, and a palletizer for EPS loading. This paper introduces the S-LOM method and the F3D printer, and the comparisons of the outputs from the conventional method and S-LOM method through actual formwork production.

Citations

Citations to this article as recorded by  Crossref logo
  • Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer
    Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 719.     CrossRef
  • Development of Connection Technology between Multi-Point Press and Flexible Mold for Manufacturing Free-Form Concrete Panel
    Jiyeong Yun, Jongyoung Youn, Jihye Kim, Donghoon Lee
    Buildings.2022; 12(6): 767.     CrossRef
  • Development of an Adaptive Slicing Algorithm of Laminated Object Manufacturing Based 3D Printing for Freeform Formwork
    Dongyoun Lee, Junho Hong
    Buildings.2022; 12(9): 1335.     CrossRef
  • Optimal slope cutting algorithm for EPS free-form formwork manufacturing
    Harim Kim, Heejae Ahn, Chanwoo Kim, Dongyoun Lee, Taehoon Kim, Yeonho Ko, Hunhee Cho
    Automation in Construction.2022; 143: 104527.     CrossRef
  • Seismic Performance of F3D Free-Form Structures Using Small-Scale Shaking Table Tests
    Min Jae Park, Gain Cheon, Robel Wondimu Alemayehu, Young K. Ju
    Materials.2022; 15(8): 2868.     CrossRef
  • An Analytical Study of the Latest Trends of Free-Form Molds
    Jongyoung Youn, Jiyoung Yun, Sungjin Kim, Bumjin Han, Sunglok Do, Donghoon Lee
    Sustainability.2022; 14(5): 3084.     CrossRef
  • Development of Side Mold Control Equipment for Producing Free-Form Concrete Panels
    Jiyeong Yun, Kyeongtae Jeong, Jongyoung Youn, Donghoon Lee
    Buildings.2021; 11(4): 175.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Study of Moving Distance of Ricocheted Debris for Various Medium with Air Drag Force Coefficient
Yoon Keon Kim, Woo Chun Choi
J. Korean Soc. Precis. Eng. 2020;37(1):51-58.
Published online January 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.079
When a building explodes, debris generated bounces after hitting the ground with high energy. It is called the ricochet phenomenon. Ricochet phenomena increase the risk of damage by increasing the moving distance of the debris. The ricochet of debris is impacted by the type of medium. In this paper, the behavior and travel distance of debris after ricocheting are studied according to the type of medium. For various initial conditions, the ricochet of the debris was studied through FEM, and the resulting values were fitted to the 3D curved surface, to predict the speed and angle after the ricochet. The trajectory of the sphere was calculated with the flight formula, considering drag force by using the MATLAB. The ricochet of debris is impacted by the contact area with the medium. As the contact area increases, the reflection angle increases due to the increase of the repulsive force. As the size of the debris increases, the contact area increases and the energy loss increases, but it moves further because of the increase of the weight and kinetic energy. The type of media around the building can be used as an appropriate means of controlling the travel distance of the debris.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study of Moving Distance of Ricocheted Debris for Various Debris Shape with Air Drag Coefficient
    Yoon Keon Kim, Woo Chun Choi
    Journal of the Korean Society for Precision Engineering.2020; 37(3): 209.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold
Junghwan Seo, Daehie Hong
J. Korean Soc. Precis. Eng. 2017;34(1):35-39.
Published online January 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.1.35
We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of ‘Π’ and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.

Citations

Citations to this article as recorded by  Crossref logo
  • Development of Side Mold Control Equipment for Producing Free-Form Concrete Panels
    Jiyeong Yun, Kyeongtae Jeong, Jongyoung Youn, Donghoon Lee
    Buildings.2021; 11(4): 175.     CrossRef
  • Manufacturing Automation System of Freeform Concrete Formwork Using S-LOM Method
    Joonhyeok Sim, Hakmin Kim, Kyunwoo Park, Chanwoo Kim, Daehie Hong
    Journal of the Korean Society for Precision Engineering.2020; 37(1): 43.     CrossRef
  • 8 View
  • 0 Download
  • Crossref