Elastomeric O-ring seals are widely used in static and dynamic applications due to their excellent sealing capacity, and availability in various costs and sizes. One of the critical applications of O-ring seals is solid rocket motor joint seal. In this, the operating hot gas must be sealed during the combustion time. In this study, we analyzed the behavior of O-ring compressed and highly pressurized by using the finite element method. The numerical analysis technique was verified through the comparison of analytical model and FE results. By using the verified FE method, the contact stress profiles at the sealing surfaces were investigated. It was found out that the contact stress profiles and deformation behaviors of the Oring are affected by friction coefficient, extrusion gap and stress relaxation considerably.
Citations
Citations to this article as recorded by
Experimental and numerical evaluation of a rubber seal in a vacuum suction pad for an automatic mooring system Yeonhong Son, Taehyun Lee, Jung Yup Kim, Hwasup Jang, Jongjik Lee, Youngki Kim, Songkil Kim, Yongjin Kim Marine Structures.2024; 94: 103573. CrossRef
A Study on Sealing Performance Analysis for Electric Vehicle Coolant Control Hub Modules System Kim Gisu, Jeongsun Lee, Dongchul Kim, Myeongeui Song, Cho Wooyeon Transaction of the Korean Society of Automotive Engineers.2023; 31(3): 227. CrossRef
Structural Analysis and Experimental Study on the Spherical Seal of a Subsea Connector Based on a Non-Standard O-Ring Seal Dong Liu, Feihong Yun, Kefeng Jiao, Liquan Wang, Zheping Yan, Peng Jia, Xiangyu Wang, Weifeng Liu, Xiaoquan Hao, Xiujun Xu Journal of Marine Science and Engineering.2022; 10(3): 404. CrossRef
Finite element analysis model was fabricated to confirm stress concentration phenomenon occurring in the wafer edge region in the CMP process, and it was confirmed if it corresponds to the measurement result of the actual pressure sensor. First, contact stress distribution at the edge of the wafer was calculated by the finite element analysis model in which material properties and boundary conditions were set up. As a result, an engineering contact stress distribution profile was obtained. Next, the pressure generated in the edge region of the wafer was measured using a pressure sensor that detects resistance change of the polymer. To compare with the result of the finite element analysis, the non-dimensional sensor signal unit was converted into the pressure unit, and correlation between the analysis and measurement results was obtained. As a result, the finite element analysis result, the actual pressure measurement, and the trend of the results were more than 90%. The results show that the finite element analysis model produced and modified in this study is consistent with the actual behavior trend of the components.
Citations
Citations to this article as recorded by
Variation of Pad Temperature Distribution by Slurry Supply Conditions Jinuk Choi, Seonho Jeong, Kyeongwoo Jeong, Haedo Jeong Journal of the Korean Society for Precision Engineering.2020; 37(12): 873. CrossRef