The aim of this study is to numerically investigate the cooling performance of the electric vehicle motor depending on the attachment of the heat sink and materials to the cooling channel. The research focused on the numerical comparison of forced convective heat transfer coefficients with case 1 (Heat Sink-None, Cooling Channel-Al), case 2 (Heat Sink-None, Cooling Channel-Metal Hybrid Material), case 3 (Heat Sink-4EA, Cooling Channel-Al), and case 4 (Heat Sink-6EA, Cooling Channel-Al). To compare the cooling performance for novel design of the smart cooling system, selected local positions for various temperature distributions were marked on the coil surface. Normalized local Nusselt number of the cooling area at the normalized width position indicated that cooling performance of case 1 was on an average 8.05, 0.57, and 5.85% lower than that of cases 2, 3, and 4, respectively.
Citations
Citations to this article as recorded by
Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance Seungyong Choi, Wanki Cho, Seung-Han You Journal of the Korean Society for Precision Engineering.2024; 41(5): 347. CrossRef
This research is to investigate the cooling performance of the motor in the electric vehicle depending on the cooling channel fin. The research focused on numerical study of the temperature of coil and cooling channel and the heat transfer coefficients to find a optimum design shape with high cooling performance at three different cases. To compare the convective cooling performance of the three cooling channels, local position (R) are displayed on the surface of the coils with a large temperature deviation. This research was performed on forced convection and was numerically analyzed by FLUENT V20.2. Owing to forced convection by the same mass flow, the average cooling channel velocity in Case 3 was 17.4% faster than Case 1 and 8.6% faster than Case 2. Out of the three cases, the highest heat transfer coefficient was found in the cooling channel and coil of Case 3, which had two cooling fins. The coil maximum temperature of Case 3 with 2 cooling fins was 4.7% lower than Case 1 without cooling fins and 1.7% lower than Case 2 with 1 cooling fin. Ultimately, Case 3 with two cooling fins provided the best cooling performance and improved driving motor performance for motor durability.
Citations
Citations to this article as recorded by
Thermal management strategies and power ratings of electric vehicle motors Jaya Antony Perinba Selvin Raj, Lazarus Godson Asirvatham, Appadurai Anitha Angeline, Stephen Manova, Bairi Levi Rakshith, Jefferson Raja Bose, Omid Mahian, Somchai Wongwises Renewable and Sustainable Energy Reviews.2024; 189: 113874. CrossRef
This study is to investigate the cooling performance of the battery in the electric vehicle depending on the attachment of the cooling plates and materials to the battery cells. Research focused on the numerical comparison of forced convective heat transfer coefficients with case 1(cell-Al, cooling plate-None), case 2(cell-Al, cooling plate-Al), case 3(cell-Al, cooling plate-C), and case 4(cell-C, cooling plate-Al). Normalized local Nusselt number of the cooling area at the normalized width position indicated that the heat transfer coefficient of the case 1 was averaging at 7, 14.5, 11.9% lower than that of case 2, case 3, and case 4. Based on case 3, the cooling performance with six different types of mass flow rates (0.05, 0.075, 0.0875, 0.1, 0.125, 0.15 kg/s) were compared. Normalized local Nusselt number at the normalized width position indicated that the heat transfer coefficient of 0.0875 kg/s was averaging at 35.8, 11.9% higher than that of 0.05, 0.075 kg/s and 12.3, 36.4, 60% lower than that of 0.1, 0.125, 0.15 kg/s. Ultimately, the best optimization design for air-cooling performance was case 3 with mass flow rate of 0.125 kg/s.
Citations
Citations to this article as recorded by
Numerical and Experimental Approaches for Mechanical Durability Assessment of an EV Battery Pack Case Hyun Soo Kim, Mingoo Cho, Changyeon Lee, Jaewoong Kim, Sungwook Kang Materials.2025; 18(24): 5683. CrossRef
The purpose of this study was to investigate the flow characteristics and cooling performance for the heavy turbine blade with different shapes. Research was focused on the numerical study on forced convective heat transfer coefficients for three different blades with base, tip, and hole. Thus, selected local locations for various temperature distributions were shown in the flow domain. Final temperature on the local surface of blades was compared with three different blades. According to the results of velocity and temperature distributions in the fluid domain, the blade with holes had the best convective cooling performance with higher 13-16% average heat transfer coefficient than the other two blades. Apparent vortex at the tip of tip and hole blade caused the stable temperature drop. According to the calculations of local convective heat transfer coefficient between blade surface and atmosphere in the blade, approximately 18% of heat transfer coefficient at hole was higher than the base blade and 7% at hole blade was higher than the base blade. Lowest cooling performance existed at the center position of all three blades.
This study is to investigate convection cooling performance of the Secondary Battery of Electric Vehicle without heat sink. Research is focused on the comparative study on cooling between forced convection and natural convection cooling. Selected local locations for various temperature distributions had shown in the flow domain. Final temperature on the cell surface has been compared by forced convection with natural convection. According to the results of velocity and temperature distributions in the fluid domain, Buoyancy appear by density difference in the natural convection. Apparent vortex was detected in the fluid domain for forced convection. According to calculations of convective heat transfer coefficient between cell and atmosphere in the battery pack, average value of more 70-78% heat transfer coefficient increased by forced convection than natural convection. Average temperature value of the cell surface decreased up to 46.50% by forced convection. Due to vortex by air, cooling performance of forced convection is excellent. In addition, cooling on edge of the battery is better than heat source location.
Citations
Citations to this article as recorded by
Numerical and Experimental Approaches for Mechanical Durability Assessment of an EV Battery Pack Case Hyun Soo Kim, Mingoo Cho, Changyeon Lee, Jaewoong Kim, Sungwook Kang Materials.2025; 18(24): 5683. CrossRef
A Study on Heat Radiation Performance for Different Layout of Electric Vehicle Secondary Battery Cell Seung Bong Hyun, Byeong Yeop Kim, Ji Hun Song, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(4): 271. CrossRef