In order to monitor the machining status of a machine tool, it is necessary to measure the signal of the machine tool and establish the relationship between the machining status and the signal. One effective approach is to utilize an AIbased analysis model. To improve the accuracy and reliability of AI models, it is crucial to identify the features of the model through signal analysis. However, when dealing with time series data, it has been challenging to identify these features. Therefore, instead of directly applying time series data, a method was used to extract the best features by processing the data using techniques such as RMS and FFT. Recently, there have been numerous reported cases of designing AI models with high accuracy and reliability by directly applying time series data to find the best features, particularly in the case of AI models combining CNN and LSTM. In this paper, time series data obtained through a gap sensor are directly applied to an AI model that combines CNN, LSTM, and MLP (Multi-Layer Perceptron) to determine tool wear. The machine tool and tool status were monitored and evaluated through an AI model trained using time series data from the machining process.
Citations
Citations to this article as recorded by
Development of AI-based Bearing Machining Process Defect Monitoring System Dae-Youn Kim, Dongwoo Go, Seunghoon Lee Journal of Society of Korea Industrial and Systems Engineering.2025; 48(3): 112. CrossRef
A Review of Intelligent Machining Process in CNC Machine Tool Systems Joo Sung Yoon, Il-ha Park, Dong Yoon Lee International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243. CrossRef
Bone plates are a medical device used for fixing broken bones, which should not have a crack and hole defect. Defect detection is very important because bone plate defect is very dangerous. In this study, we proposed a defect detection model based on a parallel type convolution neural network for detecting bone plate crack and pore deformation. All size filters were different according to the defect shape. A convolution neural network detected pore defects. Another convolution neural network detected the crack. Two convolution neural networks simultaneously detected different defect types. The performance of the defect detection model was measured and used for the F1- score. We confirmed that performance of the defect detection model was 98.4%. We confirmed that the defect detection time was 0.21 seconds.