This research investigated the cooling performance of the motor in electric vehicle depending on the shape of the cooling channel. The research, conducted numerically by FLUENT V20.1, focused on the numerical study of heat transfer coefficients to find an optimum design shape with high cooling performance. To compare the cooling performance, the temperatures in the coil and cooling channel were analyzed. As a result of forced convection, the average cooling channel velocity of Case 2 was 38% faster than Model N and 34% faster than Case 1. The maximum temperature of the cooling channel of Case 2 was 8.7% lower than Model N and 5.6% lower than Case 1. The minimum temperature of the coil of Case 2 was 2.7% lower than Model N and 4.3% lower than Case 1. The maximum temperature of the coil of Case 2 was 4.6% lower than Model N and 2.9% lower than Case 1. Ultimately, cooling channel of Case 2 showed the best cooling performance and improved driving performance for motor durability.
Citations
Citations to this article as recorded by
Development of a novel electro-mechanical brake motor thermal management system for nonuniform heating under extreme thermal conditions Piljun Park, Hongseok Choi, Sangwook Lee, Sunoh Jeong, Hoseong Lee Energy Conversion and Management.2025; 325: 119406. CrossRef