In this study, the design for additive manufacturing of shoe molds with complex and precise patterns was performed to achieve rapid prototyping. Low alloy steels such as AISI4340 and SAE1524 were selected to make shoe molds to apply to the conventional chemical etching process. A lattice-oriented design and optimization of toolpath was tested to reduce the processing time. A reduction of 60% in processing time and pattern precision of 0.3 ㎜ was been achieved. Moreover, to improve the reliability of pattern formation, single-layer image analysis with computer vision and machine learning was developed and non-destructive analysis by X-ray CT was been performed. It was found that the quality of shoe molds can be decreased with a single defective layer.
Recently, competition in the manufacturing industry related to the preoccupation of new markets has drastically changed due to the increase in small quantity batch production products. Besides, business models utilizing 3D printing technology suitable for flexible manufacturing are gaining interest. As 3D printing technology is becoming more common, Design for Additive Manufacturing is also in the spotlight. However, the productivity of 3D printing technology is still insufficient in terms of mass production. In this study, the possibility of innovation in mass production process that combines 3D printing technology is presented through the case of innovation in manufacturing productivity of medium-speed engine cylinder head through the integration of sand 3D printing technology. It outlines how sand 3D printing technology is applied to cylinder head mass production processes, how the quality of cylinder head products can be improved compared to conventional pattern-based molding methods, and how productivity can be maximized by reducing process time and human error through hybrid production method with sand 3D printed integrated design cores. In conclusion, this paper presents the effectiveness of sand 3D printing technology which can secure product competitiveness by increasing the production capacity of mass production process, reducing production costs, improving quality, and reducing loss.
Citations
Citations to this article as recorded by
Digital Transformation of Metal Casting Process Using Sand 3D Printing Technology with a Novel Methodology of Casting Design Inside a Core Kuk-Hyun Han, Jin-Wook Baek, Tae Wan Lim, Ju Min Park International Journal of Metalcasting.2023; 17(4): 2674. CrossRef
In this study, design for additive manufacturing (DfAM) of release agent injection manifold for hot forging has been performed to achieve weight reduction and flow path optimization. The weight reduction of 53.5% was achieved, thereby enabling the application of stainless steel 316L, which has high strength and corrosion resistance. Lightweight manifolds using Al-Mg-10Si and SUS316L materials were fabricated by PBF-type metal 3D printer. The feasibility test showed that mold life was improved by 14% by solving residual release agent problem. In addition, the flow path optimization results suggested that the flow standard deviation of each outlet dropped sharply from 264 to 75 ㎤/s. This approach demonstrated that DfAM for release agent manifold could be applied to increase mold life and improve product quality and productivity for hot forging.
Citations
Citations to this article as recorded by
Optimize Design of Flow Divider and Verification of the PBF 3D Printing Process Jae-Hwi Lee, Jae-Ho Shim, Dong-Hun Sin, Yong-Seok Yang, Dong Soo Kim Journal of Flexible and Printed Electronics.2024; 3(2): 249. CrossRef
Additive Manufacturing for Rapid and Precise Pattern Formation in Shoes Mold Seok-Rok Lee, Eun-Ah Kim, Ye-Rim Kim, Dalgyun Kim, Sunjoo Kim, Soonho Won, Hak-Sung Lee Journal of the Korean Society for Precision Engineering.2023; 40(3): 211. CrossRef
Owing to recent advances in additive manufacturing technology, design for additive manufacturing (DfAM) has been used to overcome design limitations due to constraints in traditional manufacturing processes. In this study, we applied DfAM technology to design lightweight and consolidated vacuum grippers for inspection equipment. We proposed a consolidated design to reduce manufacturing time and costs, which previously encompassed assembling eleven components. Topology optimization was used to reduce part weight while maintaining structural rigidity and safety, and two optimization models were designed: two-piece and one-piece models. Based on these optimized geometries, the internal vacuum paths were designed in a curved shape to enhance adsorption characteristics. Numerical simulations were conducted to evaluate the structural performance and flow characteristics of the initial design and the two optimization models. The pressure drop of the one-piece model, which was the best design, was reduced to 1/8 of the initial design and the structural safety factor was predicted to be 6.37. This final design was then additively manufactured by a digital light processing type 3D printer and the weight of the resulting parts was reduced from 12.94 to 2.08 g. Experimental observation found that the additively manufactured vacuum gripper showed enhanced absorption performance compared to the initial design.
Citations
Citations to this article as recorded by
A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park Journal of the Korean Society for Precision Engineering.2024; 41(7): 541. CrossRef
A Study on Injection Mold Design Using Topology Optimization Mi-Jin Kim, Jae-Hyuk Choi, Gyeng-Yun Baek Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(4): 100. CrossRef
The purpose of this study was to design a sledge frame for para ice hockey in which an athlete sits and plays on a sledge. A sledge comprises a bucket, a blade carrier, and a frame. A sledge frame is usually fabricated by welding a number of pipes, and thus its structural safety is degenerated at the welded joints. In this study, the sledge frame was redesigned using the principle of DfAM (Design for Additive Manufacturing), to reduce the frame weight as well as to have sufficient structural safety. As an application of DfAM, the part consolidation was performed for six joints from which the number of welding spots was reduced to 56% (From 16 to 9). Among the resulting four consolidated joints, topology optimization was performed for three joints to reduce their weight while maintaining higher structural stiffness and safety. As a result, the structural stiffness and safety of the joints improved remarkably, and the resulting frame weight was reduced by 20% (From 1.66 to 1.34 kg). This weight reduction with structural enhancement is expected to improve athletes’ performance and safety in para ice hockey games.
Citations
Citations to this article as recorded by
A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park Journal of the Korean Society for Precision Engineering.2024; 41(7): 541. CrossRef
Additive Manufacturing of a Release Agent Injection Manifold for Hot Forging Hak-Sung Lee, Min-Kyo Jung, Eun-ah Kim, Soonho Won, Do Wock Chun, Taeho Ha Journal of the Korean Society for Precision Engineering.2021; 38(9): 675. CrossRef
Analysis on the Warm Bending Process of Magnesium Alloy Sheet Using Additively Manufactured Polymer Die-Set Hyung-Won Youn, Jun-Hyun Kyeong, Keun Park, Chang-Whan Lee Journal of the Korean Society for Precision Engineering.2021; 38(10): 775. CrossRef
Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization Euddeum Cha, Tae-Young Kim, Taeho Ha, Keun Park Journal of the Korean Society for Precision Engineering.2021; 38(9): 683. CrossRef