Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Design optimization"

Article category

Keywords

Publication year

Authors

"Design optimization"

Articles
Development of Design Optimization Module for Hydrostatic Bearings
Gyungho Khim, Jeong Seok Oh
J. Korean Soc. Precis. Eng. 2023;40(12):989-995.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.095
This paper presents the development of a design optimization module for achieving the best performance of hydrostatic bearings. The design optimization module consists of two components: a bearing performance analysis module and an optimization module that utilizes optimization algorithms. Widely recognized global search methods, genetic algorithm (GA), and particle swarm optimization (PSO) algorithm, were employed as the optimization algorithms. The design optimization problem was defined for hydrostatic bearings. Optimization design processes were carried out to improve load capacity, stiffness, and flow rate. Subsequent experimental validation was conducted through the fabrication of a practical experimental setup. The design optimization model demonstrated superior performance compared to the initial model while satisfying design conditions and constraints. This confirms the practical applicability of the design optimization module developed in this study.
  • 4 View
  • 0 Download
Precision positioning stages are devices for precisely positioning objects according to required degrees of freedom and performance. Precision positioning stages are classified into serial and parallel mechanisms. Except for specific applications, the parallel mechanism is preferred. In serial mechanism, dynamic characteristics such as resonant frequency are clearly different from axis to axis and the first resonance frequency is distinctly low compared to the second. These make the control performance different for each axis and incurs limitation in control. In this study, the first and second resonant frequencies in a serial 2-DOF precision positioning stage were increased while maintaining their approximal value. Compliance analysis for the stage was performed by applying the matrix based method. A new concept of resonant frequency isotropy (RFI) was introduced and design optimization was performed in which first and second resonant frequencies almost coincided. This optimization allowed for the design of a serial 2-DOF precision positioning stage with enhanced first resonance frequency by 50.8% and RFI by 80.2% compared to the initial design. This paper is expected to increase the use of precision positioning stages based on serial mechanism and apply the concept of RFI to the positioning stages with more than 2-DOF.
  • 6 View
  • 0 Download