While designing an armored vehicle platform, survivability is the most important capability and so protection design should be performed. In particular, mine protection design should be preferentially considered in a way that can reduce mass casualties. In this study, a simplified model, the main design parameters and their levels were defined, and then mine blast simulations were performed to obtain an effective protection design procedure. Before performing the main simulation, an experiment and simulation for a simple armor plate were performed and compared in order to certify the reliability of the numerical model. Afterwards, simulation cases, which were based on the reasonable numerical model, were defined by the DOE (Design of Experiment). An evaluation of the simulation results was carried out through both the contour and in a statistical manner, via a main effect analysis and ANOVA (Analysis of Variance). Finally, the impact characteristics of a protection parameters under the mine blast were estimated.
Citations
Citations to this article as recorded by
The Study on the Mine Protective Structural Design of Wheeled Armored Vehicle Body Chan Young Park, Kyoung Hoon Lee Journal of the Korean Society for Precision Engineering.2019; 36(3): 255. CrossRef
A differential is a mechanical device that supports smooth driving, by allowing each of the two wheels, to rotate at differential speeds during a turn. This is particularly crucial for tractors, as they mainly work on the ground, often becoming stuck off-highway, or falling into pits. When the tractor wheel is stuck off-highway, it is difficult to get the wheel out, as the differential of the tractor reduces friction between the wheel and the ground surface. In order to prevent this wheel slip situation, the differential locking device, which restricts the two wheels on the axle to the same rotational speed, has been used in the axle of the tractor. In this study, analysis models of the hydraulic system and the dog clutch were developed to predict the performance of the differential locking device. Using the LMS imagine. AMEsim software, the analysis models were verified by comparing the simulation results with the experimental data. Using the models developed, the influence of the release time of the differential locking device on selected design parameters was analyzed, to determine the effect on the release time of the differential locking device. As a result, design values that will improve the performance of the differential locking device were derived.