Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Deuk Kyu Lee"

Article category

Keywords

Publication year

Authors

"Deuk Kyu Lee"

Articles
An Analytical Study on the Design of Housing Components for 10 kWh Flywheel Energy Storage System
Deuk Kyu Lee, Beom Soo Kang
J. Korean Soc. Precis. Eng. 2020;37(1):59-66.
Published online January 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.070
The Flywheel Energy Storage System (FESS) stores the electric energy into the rotational kinetic energy of the rotor. The FESS uses housing components so that the rotor spins inside the housing where the vacuum is maintained. Thus, the housing component is exposed to the load due to this pressure difference, and designing the housing that can efficiently support this load is crucial. Meanwhile, in the situation wherein the rotor lifting force is blocked, the rotor drops and damages the system. Thus, it is necessary to equip a structure capable of supporting the corresponding impact of the rotor drop. In this study, the design of the housing components is described by considering the structural robustness of the housing components, under the atmospheric pressure and impact of the rotor drop. For the pressure load, structural analysis was conducted following the different housing lid shapes: concave, convex, and flat. For the impact of the rotor drop, the structural analysis was conducted following the different terminal velocities of the rotating rotor. As a result, the designed housing components comprise a concave housing lid and the safety suspension 1 mm beneath the rotor. Considering the results, it operates stably under the conditions stated above.
  • 5 View
  • 0 Download
A Study on the Design of Rotor for 10 kWh Flywheel Energy Storage System
Beom Soo Kang, Deuk Kyu Lee
J. Korean Soc. Precis. Eng. 2019;36(2):199-208.
Published online February 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.2.199
The importance of environmentally-friendly energy production has been growing globally, and studies on energy storage technologies are underway, to supply produced energy to consumers. Flywheel Energy Storage System (FESS) is physical energy storage technology, that stores generated electric energy into kinetic energy in the rotor. To design the FESS with a high-strength steel rotor, that is inexpensive, recyclable and easy to manufacture, mechanical and electrical components such as a rotor, bearings, etc. are required. Among these, safety of rotor and bearings is critical, because the rotor with high rotating speed may cause axis failure or fracture of the rotating body. Proper size of a rotor for required energy storage and radial, axial forces generated by the spinning rotor was calculated, considering gyroscopic forces acting on the rotating body. Based on the calculation, adequately sustainable angular ball bearings were selected. As a result, by conducting structural, modal and critical speed analysis, safety verification is presented pursuant to the American Petroleum Institute (API) publication 684.

Citations

Citations to this article as recorded by  Crossref logo
  • An Analytical Study on the Design of Housing Components for 10 kWh Flywheel Energy Storage System
    Deuk Kyu Lee, Beom Soo Kang
    Journal of the Korean Society for Precision Engineering.2020; 37(1): 59.     CrossRef
  • 7 View
  • 0 Download
  • Crossref