Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Do Hwan Kang"

Article category

Keywords

Publication year

Authors

"Do Hwan Kang"

Article
Vibration Analysis for Developing Ultrasonic Kitchen Knife for Cutting Foods
Do Hwan Kang, Ji Won Seo, Dong Sam Park
J. Korean Soc. Precis. Eng. 2021;38(6):447-454.
Published online June 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.018
Ultrasonic cutting is used not only for cutting various materials such as metals and non-metals, but also for bone cutting of the human body or for various surgical operations. In recent, ultrasonic cutting technology is being applied for cutting various food products such as cakes, pizza, and cheese. It is shown that ultrasonic vibrations for cutting food products enables high-precision and high-quality cutting, and the quality of the cutting surface is affected by the shape of food products and cutting conditions. However, most of the studies have been on industrial cutting horns that can be used in large-scale grocery factories, but these cutting horns are very different from the shape of knives used in the households. Accordingly, research or technology development for ultrasonic cutting knives that can be used in household has not been studied. Therefore, this study developed a knife that can cut or process food by applying ultrasonic vibration while having a shape similar to the existing knife as possible so that it can be used in general. To develop such a knife, a modal analysis was performed using the finite element method for knife models of various shapes, and a suitable model for a kitchen knife was proposed.

Citations

Citations to this article as recorded by  Crossref logo
  • Development and Performance Verification of an Ultrasonic Food Cutter
    Byung-Soo Yang, Ji-Chan Suk, Jeong-Suk Seo, Dong-Sam Park
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(5): 54.     CrossRef
  • 8 View
  • 0 Download
  • Crossref