This research aims to provide a useful algorithm for the prediction of the geometrical expansion of flat rings in the radialaxial ring rolling process in case of multiple variations of the mandrel feeding speed during the process. The proposed algorithm was subjected to a 2-phases validation process, where results were compared with those of laboratory experiments, conducted at 150℃ on rings made of AA-1070 and AA-6061 aluminum alloys, and with numerical simulations, considering 7 different rings with outer diameter ranging from 800 to 2000 ㎜ and made of 42CrMo4 steel alloy, Ti6Al4V titanium alloy and AA-6061 aluminum alloys. In the first and second validation phases, the maximum deviation in the estimation of the outer diameter of the ring has been calculated in 1.7% and 6.82%, respectively. According to the results of the validation, the proposed algorithm is able to properly predict the geometrical expansion of the ring for multiple variations of the mandrel feeding speed during the process and has good accordance with both relatively small and large rings.
For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.