Rolling contact fatigue (RCF) and wear caused by rolling contact between the wheel and rail are inevitable problems in railway systems. An increase in axle load or the slip ratio causes excessive wear. However, RCF and wear do not act independently, but one influences the other. Wheel and rail materials and manufacturing quality have a considerable influence on the formation of RCF and the ensuing wear. Therefore, the mechanical properties of the wheel and rail are important factors for reducing RCF and wear on the contact surface. This paper presents a comparative evaluation of the wheel and rail used in the Korean industry for high speed trains and conventional rails with respect to their fatigue and fracture behavior. A series of tests such as uniaxial tensile tests, fracture toughness tests, and fatigue crack growth tests were carried out at both room temperature and low temperatures.
Citations
Citations to this article as recorded by
Estimating the Initial Crack Size Distribution of Thermite Welds Joint in Continuous Welded Rail Jae Yeon Lee, Yeun Chul Park, Ji Hyeon Kim, Jun Hyeok Kwon Journal of Korean Society of Steel Construction.2024; 36(6): 451. CrossRef
Rolling contact fatigue and wear on rails are inevitable in railway operations due to excessive wheel–rail contact stress. The wear is influenced by vehicle speed, contact pressure, environmental conditions, and many other factors. Speeding on a curved track causes many problems such as wear on the gauge of the rail and rolling contact fatigue. Managing environmental conditions can reduce problems on the wheel and rail interface. In this study, the wear characteristics of wheel and rail materials were investigated by twin-disc testing using various parameters. The results of the wear test indicated that the wear rate under dry conditions was larger than that under wet conditions. We found that contact fatigue damage occurred on the rail in dry conditions, however, the surface of the specimen under water remained smooth. Also, the friction coefficient in dry conditions was larger than in wet conditions.
Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.