This study proposes a method for identifying correlations between tension and drop height for sessile droplets in a roll-toroll processing system. The effect of tension and drop height on the contact angle of a sessile droplet is presented. Design of experiment (DOE) methodology and statistical analysis are used to define a correlation between the process parameters. The contact angle is decreased while increasing tension and drop height. The influence of the tension is less significant on the contact angle compared with the effect of the drop height. However, tension should be considered as a major parameter because it is not easy to fix with roll eccentricity and compensating speed of the driven roll. The results of this study show that the effect of tension on the contact angle of a sessile droplet is more important than drop height because the drop height is fixed when the process systems are determined.
Citations
Citations to this article as recorded by
Temperature Uniformity Control of 12-Inch Semiconductor Wafer Chuck Using Double-Wall TPMS in Additive Manufacturing Sohyun Park, Jaewook Lee, Seungyeop Lee, Jihyun Sung, Hyungug Jung, Ho Lee, Kunwoo Kim Materials.2025; 18(1): 211. CrossRef
Periodicity of Droplet Impact Behavior by Liquid Viscosity on PDMS Surface Dong Kwan Kang, Sangmin Lee Journal of the Korean Society for Precision Engineering.2022; 39(11): 857. CrossRef