Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Dynamic material properties"

Article category

Keywords

Publication year

Authors

"Dynamic material properties"

Articles
A Numerical Investigation of Deformed Region in Plate Specimen of Split-Hopkinson Tensile Bar
Byeongjin Park, Yeon-Bok Kim, Jeong Kim
J. Korean Soc. Precis. Eng. 2024;41(8):607-615.
Published online August 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.025
In Hopkinson bar theory, stress, strain, and strain rate can be determined by analyzing the dimensions of the specimen. When conducting Split-Hopkinson Pressure Bar (SHPB) experiments, the stress-strain curve is obtained by considering the entire length and width of the specimen. However, in Split-Hopkinson Tensile Bar (SHTB) experiments, it is important to only consider the regions where deformation occurs in order to accurately determine the dynamic material properties. This study introduces a method for selecting the dimensions of the deformed region (LD and WD) in plate specimens for SHTB experiments using Finite Element Analysis (FEA). The analysis involved varying the length and width of a 1 mm thick SUS430 specimen, and the deformed region was determined using the proposed method. The stress-strain curves obtained from this region were then compared with the input Cowper-Symonds model. The validity of the proposed approach was confirmed, as the percentage error between them ranged from 2.54 to 6.62%.
  • 5 View
  • 0 Download
Finite Element Analysis on Dynamic Viscoelasticity of CMP Polishing Pad
Byeongjun Pak, Dasol Lee, Seonho Jeong, Hyunjin Kim, Haedo Jeong
J. Korean Soc. Precis. Eng. 2019;36(2):177-181.
Published online February 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.2.177
Finite element analysis of CMP process was studied to understand uneven pressure distribution between polishing pad and wafer. Since WIWNU (Within wafer non-uniformity) is mainly influenced by dynamic viscoelastic properties of CMP polishing pad, the dynamic property of the polishing pad has to be understood first for dynamic finite element analysis of the process. To measure viscoelasticity of the polishing pad, time-dependent strain data by load were obtained using a viscoelasticity measurement system capable of measuring deformation by periodic load. Primary and secondary elastic modulus and relaxation time could be achieved for the behavior of the polishing pad by load. Finite element analysis was carried out under the same conditions as viscoelastic measurement. Material properties of the polishing pad were assumed based on results of experiments. By comparing experimental results with analytical results, material properties in the analytical model were modified and FEA was carried out again. It was confirmed that the behavior of the polishing pad by load in the experiment and FEA according to modified material properties were well matched. Through this process, viscoelastic properties of polishing pad were well defined for dynamic analysis of CMP process.

Citations

Citations to this article as recorded by  Crossref logo
  • High precision fabrication of aluminum optics by optimizing an Ar+ ion beam figuring strategy for polishing the contamination layer
    Chunyang Du, Yifan Dai, Chaoliang Guan, Hao Hu
    Optics Express.2021; 29(18): 28886.     CrossRef
  • 8 View
  • 0 Download
  • Crossref