Induction heating is a technology that uses heat generated by resistance when a high-frequency current is applied to a coil. An electric range using this is called an Induction Heating (IH) electric range. IH electric ranges are being widely applied in commercial products recently because they have higher thermal efficiency performances than other methods. The performance of a heating coil of an IH electric range greatly varies depending on the shape and number of coils. Thus, research on optimal coil shape and number according to product shape is required. Therefore, this study aimed to design an optimal heating coil at the set temperature of an electric range product. Target temperature was set to the temperature that a commercial stainless-steel container could withstand. The thickness of the coil copper wire, the number of windings, the applied voltage, and the frequency were set as design variables. A sensitivity analysis was performed to check the influence of each design variable on coil temperature. Based on this, optimal design was performed using the response surface method. Electromagnetic field-thermal analysis was performed with the designed coil and a very approximate result was obtained with a 0.07% error from the set target temperature.
With the increasing use of portable devices, the safety and efficiency of wireless chargers have become significant concerns. Wireless chargers can cause battery damage, deformation, and failure of the charging module due to the high temperatures generated during the charging process. Thus, the importance of thermal management has been increasingly emphasized. In this study, we experimentally confirmed that cooling performance was improved by applying phase change material (PCM) to the heat-generating parts of the wireless charger. The cooling performance of the PCM was analyzed using Ansys Fluent, the component temperature was measured with an infrared camera, and 3D thermal deformation was measured with a DIC measurement device. Electromagnetic field, thermal, fluid, and structural coupled analyses were performed to investigate the impact of thermal deformation caused by wireless charging. The results showed that the temperature and deformation error was within 3% of the coupled analysis results, and the proposed electromagneticthermal-fluid-structural coupled analysis enabled more accurate simulation prediction of the physical coupling process inside the wireless charger.
When a narrow gap was formed under appropriate welding conditions in the steel pipe manufacturing process using highfrequency resistance welding, temperature distribution was analyzed to predict the length of the gap. Assuming the length of the gap from the apex point to the welding point at an applied voltage, and calculating the temperature distribution around the gap, the length of the gap with an appropriate fusion width at the welding point could be estimated. Along with this, the current density and magnetic flux density distributions that appeared in the narrow gap were obtained according to the change in the applied voltage, and the distribution shape and size of the electromagnetic force acting on the gap were also predicted. The current density, magnetic flux density, and electromagnetic force gradually increased along the narrow gap, showing the maximum value at the welding point. In the temperature distribution in the narrow gap, the surface of the front end began to melt at an appropriate applied voltage, and the melting width was the largest at the welding point. As the applied voltage increased, the narrow gap became longer, and the appropriate gap length appeared in proportion to the applied voltage.
Citations
Citations to this article as recorded by
Analysis of Stress Distribution around the Weld Zone in High Frequency Resistance Welding of Steel Pipe Young-Soo Yang, Kang-Yul Bae Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 21. CrossRef
This paper proposes a high-fidelity finite element model of a permanent synchronous motor (PMSM) to predict electromagnetic responses. The proposed method aims to generate electromagnetic responses from the PMSM under various operational conditions-including normal and faulty conditions-by coupling several partial differential equations governing the electromagnetics of a PMSM. The rotor eccentricity is considered to be a representative fault of a PMSM, which has electromagnetic characteristics that differ from the healthy state of a PMSM. Note that eccentricity is the most frequent fault during PMSM operation. Therefore, the proposed model could replicate the defected torque responses of an actual motor system. The effectiveness of the proposed model is validated using measurements from a PMSM test bench. Quantitative comparison reveals that the proposed model could replicate both the transient- and steady-state torque responses of the PMSM of interest at a variety of operational conditions, including a faulty status. The proposed model could be used to generate virtual electromagnetic responses of a PMSM, which could be used for data-driven fault detection methods of electric motor systems.
This study performed high-frequency heat treatment experiments and simulations of the park gear of an automobile transmission. The heating temperature and hardening depth were measured during high-frequency heat treatment. Moreover, by applying the resonance RCL circuit, the current value of the coil during high-frequency heat treatment, the electromagnetic and heat transfer material properties dependent on the temperature, and the phase transformation function were all applied to the simulation. In the high-frequency heat treatment experiment, the heating temperature was 977.4℃ and the 1st direction hardening depth was 1.5 mm, the 2nd direction hardening depth was 3 mm, and the 3rd direction hardening depth was 2.5 mm, and the reliability was verified by comparing the simulation heating temperature of 1,097℃ and the 1st direction predicted hardening depth of 1.6 mm, the 2nd direction predicted hardening depth of 2.8 mm, and the 3rd direction predicted hardening depth of 2.7 mm. The error rate of the heating temperature results was 12.2% whereas that of the hardening depth results was 7.1%.
In the heating and drying system using microwaves, an optimal design method was presented to effectively shield microwaves leakage between the door and the cylindrical applicator. In order to protect the human body from leaking microwaves, it is necessary to keep the intensity of microwaves below 5 mW/cm². The door part adopts a choke structure and includes a number of design factors, such as, fin shape, slit shape, and a gap between the applicator and the door. The geometry was optimized by design of experiments, applying full factorial design and response surface method in a 4-factor, 2-level design. The results obtained by ANSYS HFSS analysis were applied to the intensity of microwave leakage according to the change of the design factors. The shape of the choke structure was optimized using Minitab, a statistical program. The microwave heating and drying system was manufactured based on optimal design value and the leakage of microwaves between the door and the applicator was measured. We confirmed that the experimental values were consistent with the simulation values.
The high-frequency electric resistance welding (HF-ERW) process is widely used in the steel pipes production because it can weld at a high speed, has excellent weldability, and attains clean and precise shapes. However, for process improvement, analytic studies on electromagnetic field and temperature distributions, and selection of appropriate process variables are required. In this study, finite element analysis models that can analyze the electromagnetic field distribution and temperature distribution in the HF-ERW of a steel pipe were proposed, in consideration of the characteristics of the process, including electromagnetic phenomena localized to the workpiece surface and fast welding speed. By applying the proposed analysis models, changes in current density, magnetic flux density, generated heat density, and fused width in the pipe could be predicted according to changes in process variables such as the V angle of the strip, the electrode position, and the source voltage. Through comparison with the analysis and the limited-case experiment, the analysis result predicted the actual fused width fairly well, and the validity of the proposed model could be verified.
Citations
Citations to this article as recorded by
Characterization of an electric resistance welded steel plate K. K. Patel, R. Nagar, D. Chauhan Practical Metallography.2025; 62(5): 331. CrossRef
Analysis of Stress Distribution around the Weld Zone in High Frequency Resistance Welding of Steel Pipe Young-Soo Yang, Kang-Yul Bae Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(6): 21. CrossRef
Analysis of Electromagnetic Field and Temperature Distribution around Narrow Gap in High-frequency Resistance Welding of Steel Pipe Young Soo Yang, Kang Yul Bae Journal of the Korean Society for Precision Engineering.2023; 40(10): 829. CrossRef
The purpose of this study was to design capacitors and a coil, which are components of an electric circuit, for improved performance of multi-stage electromagnetic coil guns. The electromagnetic force generated in the solenoid coil is determined by the magnitude of the current, supplied from the capacitor to the solenoid coil. Since the current flowing in the solenoid coil is not constant, the variability of electromagnetic force becomes larger. Design variables such as the capacitor capacity, coil winding, and firing distance are complicatedly related and determine the coil gun firing rate together. This study sets the number of turns of the solenoid coil, capacitor capacity, and firing distance as design variables for a five-stage coil gun. The electric circuit configuration of the coil gun with the highest velocity in each firing stage, was derived through the design of experiments. The coil gun’s finite element analysis model was constructed using ANSYS Maxwell, an electromagnetic analysis program, and implemented through a transient simulation to calculate the projectile’s velocity. Additionally, a prototype was manufactured based on the derived results to conduct launch experiments, and the experimental and simulation results were compared.
Citations
Citations to this article as recorded by
Enhancing the defense application with ANSYS model of thermoelectric generation for coil gun P. Sreekala, A. Ramkumar, K. Rajesh Sustainable Energy Technologies and Assessments.2022; 54: 102806. CrossRef
The electromagnetic force compensation (EMFC) measurement principle has been widely adopted in the high-precision mass metrology system due to its sensitive compliant mechanism and nanometer level position sensor. In EMFC, an electromagnetic actuator balances the gravitational weight to maintain zero (or Null) position by feedback control using a position sensor, and the weight is calculated from the current applied to the actuator. Thus, a position sensor in the EMFC system should measure the null position accurately with high sensitivity and resolution. The position sensor commonly used in EMFC balance is an optical sensor that measures the displacement of EMFC balance from the intensity of light coming through a slit using a two-segment photodiode. This paper analyzed the characteristics of an optical position sensor for EMFC balance through parametric analysis using the Fresnel diffraction model. We also evaluated the performance of the sensor and confirmed the feasibility from weighing performance of the balance prototype. Normalized sensitivity of the sensor was 0.04237 μm-1 and measured resolution was 1.09 nm. The weighing repeatability with our optical position sensor was 4.83 mg (1σ) at 10 g measurement, which was 3 times better than the repeatability with an alternative commercial sensor.
Citations
Citations to this article as recorded by
Modeling and Tolerance Analysis of Compliant Mechanism for Axis-Symmetric Mass Comparator Kyung-Taek Yoon, Young-Man Choi IEEE/ASME Transactions on Mechatronics.2024; 29(2): 878. CrossRef
Practical Gravimetric Flow Rate Measurement Method for Slot-Die Coating Uniformity Evaluation Kyung-Taek Yoon, Jeong-Hyun Bae, Young-Man Choi Journal of the Korean Society for Precision Engineering.2023; 40(2): 105. CrossRef
Novel Multi-Electromagnetic-Force-Compensation Weighing Cell With Axis-Symmetric Structure Kyung-Taek Yoon, Hyunho Lim, Jeong-Hyun Bae, Won Kyu Lee, Dongmin Kim, Young-Man Choi IEEE/ASME Transactions on Mechatronics.2022; 27(6): 6018. CrossRef
The magnetorheological material changes its characteristics according to the external magnetic field. Magnetorheological elastomer existing in the solid phase has micrometer-sized magnetically responsive particles inside. When a magnetic field is applied by a permanent magnet or electromagnet nearby, it can exhibit stiffness that changes according to the strength of the magnetic field. Many previous studies focused on verifying the variability of the material"s characteristics. However, this study newly proposed a variable stiffness joint for the suspension system of railway vehicles using a magnetorheological elastomer, as a basic study of magnetorheological elastomer for a mechanical component. Based on the characteristics test of the magnetorheological elastomer, the variable joint was designed to have the same structure as the conventional guide arm joint of a railway vehicle. Particularly, to overcome the low magnetic field strength, which may be a problem in the previous research, and to implement uniform magnetic field distribution, the electromagnet was designed to make direct contact with the magnetorheological elastomer. A mathematical model was established and a finite element method verified the model, resulting in an average magnetic flux density of 300 mT, which means 30% stiffness change at 15% shear strain.
Citations
Citations to this article as recorded by
Investigation of wheel-rail wear reduction by using MRF rubber joints with bidirectional adjustable stiffness Ning Gong, Jian Yang, Weihua Li, Shuaishuai Sun Smart Materials and Devices.2025;[Epub] CrossRef
In this study, the sensitivity of the power generation effect of the applied linear generator of the energy harvesting suspension system under various input conditions was analyzed. The energy-harvesting suspension generates electric energy through energy harvesting using the road surface vibration energy during driving. Before analyzing the power generation effect, we analyzed the structure of the eight-pole Outer PM (Permanent Magnet) linear generator model using the electromagnetic suspension system to design the efficient generator, PIANO (Process Integration and Design Optimization). The ANSYS MAXWELL program was used to perform electromagnetic simulations of a linear generator model installed inside an energy-harvesting suspension to determine the power generation of the linear generator under various input conditions. The sensitivity of each input variable was compared by comparing the power generation effect of the energy-harvesting suspension device according to road displacement, frequency, and vehicle speed. The sensitivity to the road surface frequency was 1.9451, the sensitivity to the road surface amplitude was 1.0502, and the sensitivity to the vehicle speed was 0.6258. It is confirmed that the maximum sensitivity to the road surface displacement was demonstrated.
Citations
Citations to this article as recorded by
Research on Key Issues of Consistency Analysis of Vehicle Steering Characteristics Yanhua Liu, Xin Guan, Pingping Lu, Rui Guo Chinese Journal of Mechanical Engineering.2021;[Epub] CrossRef
Shock-Absorber Rotary Generator for Automotive Vibration Energy Harvesting Tae Dong Kim, Jin Ho Kim Applied Sciences.2020; 10(18): 6599. CrossRef