Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Energy balance"

Article category

Keywords

Publication year

Authors

"Energy balance"

Regular
Analysis of Convective Heat Transfer Coefficient of Double-wall Gyroid TPMS under Constant Surface Temperature Conditions
Sohyun Park, Jihyun Sung, Dahye Kim, Kunwoo Kim
J. Korean Soc. Precis. Eng. 2025;42(12):1071-1077.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.026
In this study, we comparatively analyzed the convective heat transfer performance of single-wall and double-wall Gyroid TPMS (Triply Periodic Minimal Surface) structures. Using computational fluid dynamics (CFD), we evaluated the average convective heat transfer coefficients under constant surface temperature conditions for both constant velocity and constant pressure flow. Although both structures maintained the same fluid volume, the double-wall configuration increased the surface area by approximately 1.8 to 1.9 times, resulting in enhanced heat transfer performance. Under constant velocity conditions, the double-wall structure exhibited an average convective heat transfer coefficient that was 1.3 to 1.4 times higher than that of the single-wall structure. Under constant pressure conditions, we observed an increase of 1.06 to 1.1 times. Despite the double-wall structure leading to greater pressure losses due to increased shear stress from the formation of microchannels, it still maintained improved heat transfer performance even with reduced mass flow rates under constant pressure conditions. These findings provide fundamental data for designing TPMS-based cooling systems and optimizing additive manufacturing processes.
  • 46 View
  • 10 Download