In this study, we developed a deep learning-based real-time fault diagnosis system to automate the weaving preparation process in textile manufacturing. By analyzing typical faults such as shaft eccentricity and rotational imbalance, we designed a data-driven fault diagnosis algorithm. We utilized tension data from both normal and faulty states to implement AI-based diagnostic models, including 1D CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), and LSTM-AE (Long Short-Term Memory Autoencoder). These models enable real-time fault classification, followed by a comparative performance analysis. The LSTM-AE model achieved the best performance, with a classification accuracy of 99-100% for severe faults, such as 1.5 mm eccentricity and 100 or 150 g rotation imbalance, and 92.2% for minor faults like 1 mm eccentricity. This accuracy was optimized through threshold adjustments based on ROC curve analysis to select an optimal threshold. Building on these findings, we developed a GUI (Graphical User Interface) system capable of real- time fault diagnosis using TCP/IP (Transmission Control Protocol/Internet Protocol) communication between Python and LabVIEW. The results of this study are expected to accelerate the smartization of the weaving preparation process, contributing to improved textile quality and reduced defect rates, while also serving as a model for automation in other sectors.