Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Fatigue analysis"

Article category

Keywords

Publication year

Authors

"Fatigue analysis"

Articles
Study on the Life Prediction Analysis Methodology of Worm Gear for the TV Driving Mechanism
Dong Uk Kim, Tae Bae Kim, Il Joo Chang
J. Korean Soc. Precis. Eng. 2025;42(8):595-602.
Published online August 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.020
In the case of TV products, space constraints and design requirements make it advantageous to use a worm gear that has a small volume and a self-locking function. Single enveloping worm gear teeth are classified as ZA, ZN, ZK, ZI, and ZC according to international standards. However, combining worm shafts and worm wheels with different tooth profiles can significantly worsen meshing transmission errors and reduce the lifespan of the worm gear. Despite these challenges, due to processing limitations, ease of manufacturing, and cost reduction, combinations of worm shafts and worm wheels with different tooth profiles are still considered. In this study, we confirmed the meshing transmission error for a worm gear that combined a ZA tooth shape worm shaft with a ZI tooth shape worm wheel. Additionally, we examined the contact stress and fatigue life characteristics of the material combinations using finite element analysis (FEM).
  • 21 View
  • 1 Download
A Study on the Cold Forging Die Design for the Adapter of Automobile Engine Mount considering Tool Service Life
Ku Hee Ann, Hae Yong Cho, Su Jin Heo, 강종훈
J. Korean Soc. Precis. Eng. 2019;36(12):1107-1115.
Published online December 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.12.1107
Process and die design of cold forging for the asymmetric part, engine mount adapter has been studied. Forging of the asymmetric part frequently causes die failure because of the high forging load and local stress concentration of the die. Thus, performing process design of cold forging to minimize forging load is required. Preform for the engine mount adapter was chosen based on the forging load and filling rate of forgings by the finite element analysis. In the die design, number of stress rings, interface radius, and relative interference were investigated in several cases with maximum principle stress by the finite element method. The shape of the die was determined by comparing the load changing the radius of the flange area. Also, the life of the designed die was calculated using the Goodman theory by cyclic fatigue loading. As a result, it was confirmed that the calculation life and results of the test were identical. In this study, it is verified that stress concentration and fatigue life should be considered simultaneously in the design of cold forging die for the asymmetric part.

Citations

Citations to this article as recorded by  Crossref logo
  • Analyzing Cold Heading of Self-Piercing Rivet Using FEM
    Sangchul Lee, Jaeho Hyun, Seung-Woo Hong, Kwon Hee Won, Heesoo Park, Soongkeun Hyun, Sang-Yeol Kim
    Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(1): 19.     CrossRef
  • Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging
    Won-Seok Hwang, Jong-Won Choi, Eu-Enn Jung, Myungchang Kang
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(12): 8.     CrossRef
  • A Study on the Elimination of Surface Defect and Increase in Tool Life of the Warm Forged Spider
    Jong-Hun Kang
    Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(5): 82.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Comparison of PSD Analysis Methods in Frequency Domain Fatigue Analysis
Joon Jang, Jae Myung Cho, Kwang Hee Lee, Won Woong Lee, Woo Chun Choi
J. Korean Soc. Precis. Eng. 2019;36(8):737-743.
Published online August 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.8.737
If fatigue failure occurs during aircraft operation, it can cause catastrophic injuries. So, it is necessary to study fatigue failure at the design stage. Frequency domain fatigue analysis is used to predict fatigue failure. During frequency domain fatigue analysis, results can be calibrated by PSD analysis. In this study, fatigue failure is predicted by the Dirlik method, Lalanne method and Steinberg method. Regarding results, life determined by the Dirlik method, Lalanne method and Steinberg method were 8.737, 8.314, and 7.901 times the standard life, respectively. The Steinberg method is the most conservative but the difference with other methods was approximately 10%. In the cycle histogram, the Dirlik method had more counts than the Lalanne method in lower stress range. However, it does not affect the life of material used in this study. However, if material has a lower fatigue limit or stronger PSD data is used, life difference will occur.

Citations

Citations to this article as recorded by  Crossref logo
  • Analysis of Acoustic Load Fatigue Life of Skin of POD for Aircraft considering Aspect Ratio
    Wonwoong Lee, Jaemyung Cho, Jongin Bae, Hoonhyuk Park
    Journal of the Korea Institute of Military Science and Technology.2025; 28(2): 126.     CrossRef
  • A Study of Vibration Analysis of 100 MPa Class Fitting Thread for Mobile Hydrogen Charging Station
    JUNYEONG KWON, SEUNGJUN OH, JUNGHWAN YOON, JEONGJU CHOI
    Transactions of the Korean Hydrogen and New Energy Society.2024; 35(1): 83.     CrossRef
  • Very high cycle fatigue on gas metal arc butt-welded AA6061-T6 plates
    Iksu Kim, Moon G. Lee, Martin Byung-Guk Jun, Jungho Cho, Yongho Jeon
    Journal of Mechanical Science and Technology.2023; 37(12): 6649.     CrossRef
  • Vibration-Based Fatigue Analysis of Octet-Truss Lattice Infill Blades for Utilization in Turbine Rotors
    Sajjad Hussain, Wan Aizon W. Ghopa, S. S. K. Singh, Abdul Hadi Azman, Shahrum Abdullah, Zambri Harun, Hawa Hishamuddin
    Materials.2022; 15(14): 4888.     CrossRef
  • Experimental Verification of Dirlik Fatigue Evaluation in Frequency Domain Using Beam Structure under Random Vibration
    Eunho Lee, Siyoung Kwak
    Transaction of the Korean Society of Automotive Engineers.2021; 29(2): 157.     CrossRef
  • 6 View
  • 0 Download
  • Crossref