Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Flame temperature"

Article category

Keywords

Publication year

Authors

"Flame temperature"

Article
Development of a Vertical Burner Rig Using Methane Flame
Soo Park, Dae-Jin Kim, Jun-Young Kim, Seong-Ju Kim, Ki-Yong Lee, Jeong-Min Kim, Hyung-Ick Kim, Chang-Sung Seok
J. Korean Soc. Precis. Eng. 2024;41(8):653-661.
Published online August 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.053
In this study, we developed a new vertical thermal gradient rig that uses methane-oxygen fuel. We conducted thermal gradient testing on a thermal barrier coating system, with a flame temperature of 1,900℃. Our results showed that the maximum surface temperature reached 1,065℃, while the temperature difference between the surface temperature and the temperature of the middle substrate (ΔT) was 70oC. Using the same torch as in this study, our finding suggest that the total flow rate of the flame should be above 12.4 LPM, and the gun distance should be less than 8 cm, to simulate a surface temperature of 1,300℃, while keeping the substrate temperature below 1,000℃. This will ensure that the flame is wide enough to cover the entire surface area of the thermal barrier coating.

Citations

Citations to this article as recorded by  Crossref logo
  • Thermal Fatigue Life Evaluation of EB-PVD TBC Using Newly Developed Small-scale Burner Rig
    Soo Park, Dae-Jin Kim, Jun-Young Kim, Seoung-Ju Kim, Chang-Sung Seok
    Journal of the Korean Society for Precision Engineering.2025; 42(1): 65.     CrossRef
  • 7 View
  • 0 Download
  • Crossref