Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"General regression neural network"

Article category

Keywords

Publication year

Authors

"General regression neural network"

Article
In the printed circuit board (PCB) manufacturing industry, the yield is an important management factor as it significantly affects the product cost and quality. However, in real situations, it is difficult to ensure a high yield in a manufacturing process, because the products are manufactured through numerous nanoscale manufacturing operations. Thus, for improving the yield, it is necessary to analyze the key process parameters and equipment parameters that result in a low yield. In this study, critical equipment parameters that affect the yield were extracted through a mutual analysis of the equipment parameters (x) and process parameters (y) in the plastic ball grid array (PBGA) manufacturing process. To this end, the study uses the correlation coefficient to apply the heuristic algorithm that extracts critical parameters that keep the redundancy among the equipment parameters to a minimum and exert maximum impact on the critical process parameters. Additionally, by using the general regression neural network technique, the effects of the critical equipment parameters on the process parameters were confirmed. The test results were applied to the PBGA production line and an improvement in the yield was confirmed.
  • 5 View
  • 0 Download