Deep learning-based fault diagnosis systems for prognostics and health management of mechanical systems is an active research topic. Notably, the absence and class imbalance of fault data (insufficient fault data compared to normal data) have been shown to cause many challenges in developing fault diagnosis systems for the manufacturing fields. Therefore, this paper presents case studies using deep learning algorithms in the absence or class imbalance of fault data. Auto-encoder-based anomaly detection method, which can be used when fault data is absent, was applied to diagnose faults in a robotic spot welding process. The anomaly detection threshold was set based on the reconstruction error of trained normal data and the confidence level of the distribution of normal data. The anomaly detection performance of the auto-encoder was verified using non-trained normal data and three sets of fault data through the threshold. As a case study for insufficient fault data, synthetic data was generated based on cGAN and applied to diagnose fault of bearing. Using the imbalanced dataset to generate synthetic fault data and to reduce the imbalance ratio, it was confirmed that the accuracy of the synthetic data generation-based 2DCNN fault diagnosis model was improved.
Citations
Citations to this article as recorded by
Distribution of Force Applied to a Lateral Damper during EMU Operation Hyun Moo Hur, Kyung Ho Moon, Seong Kwang Hong Journal of the Korean Society for Precision Engineering.2024; 41(9): 673. CrossRef
Recently, in-depth studies on sensors of autonomous vehicles have been conducted. In particular, the trend to pursue only camera-based autonomous driving is progressing. Studies on object detection using IR (Infrared) cameras is essential in overcoming the limitations of the VIS (Visible) camera environment. Deep learning-based object detection technology requires sufficient data, and data augmentation can make the object detection network more robust and improve performance. In this paper, a method to increase the performance of object detection by generating and learning a high-resolution image of an infrared dataset, based on a data augmentation method based on a Generative Adversarial Network (GAN) was studied. We collected data from VIS and IR cameras under severe conditions such as snowfall, fog, and heavy rain. The infrared data images from KAIST were used for data learning and verification. We confirmed that the proposed data augmentation method improved the object detection performance, by applying generated dataset to various object detection networks. Based on the study results, we plan on developing object detection technology using only cameras, by creating IR datasets from numerous VIS camera data to be secured in the future and fusion with VIS cameras.