We demonstrate a practical and efficient hybrid triboelectric-piezoelectric energy harvesting structure that consists of a nanopatterned and/or metal-deposited polymer film and a piezoelectric elastomeric sponge. When a polymer (here, polycarbonate (PC)) and an elastomer (here, polydimethylsiloxane (PDMS)) make contact with and detach from each other, triboelectric energy can be harvested. In this case, the PC surface can be nanopatterned by continuous dynamic nanoinscribing and/or coated by a metal (here, Cu) layer for enhanced performance. When a piezoelectric material (here, lead zirconate titanate (PZT)) and sugar powder are mixed with PDMS, and the sugar is later dissolved, a porous piezoelectric elastomeric sponge (PES) can be fabricated. When a PC film and a PES make contact with and detach from each other, both triboelectric and piezoelectric energies can be simultaneously harvested. We systematically study the effect of PES and Cu thicknesses and dynamic nanoinscribed nanopattern on the energy harvesting performance of the hybrid triboelectric–piezoelectric nanogenerator (HTPENG). The performance of the HTPENG can be improved by using the PES of optimal thickness, and by applying the nanopattern and Cu layer. The HTPENG can be utilized in many systems where wireless self-powering is desired, such as wearable devices, flexible sensors, and skin electronics.
Citations
Citations to this article as recorded by
A joint sensing method for transmission line damage and sag based on triboelectric nanogenerator and deep learning Zhijie Hao, Zhenyao Ma, Changxin Liu, Yi Wang, Kailin Lei, Jiaming Zhang, Shengquan Wang, Yunchi Xie, Mingyu Lu Journal of Materials Science: Materials in Electronics.2025;[Epub] CrossRef
In this paper, we develop a cylindrical triboelectric nanogenerator (TENG) for omnidirectional wind energy harvesting, by designing a slanted slit structure along the outer surface of the cylinder. The TENG consists of an inner cylinder based on Al film and a 3D printed outer structure. Wind blowing through the slits of the outer structure causes the inner cylinder to rotate in the slanted direction, and the contact-separation between the Al cylinder and polytetrafluoroethylene attached to the inner surface of the outer structure generates an output voltage. The performance of the harvester with different inner cylinder diameters under various wind speeds is experimentally studied. The results indicate that the TENG with a smaller Al cylinder is suitable for a self-powered wind speed sensor while that with a larger cylinder is optimal for efficient energy harvesting. In addition, the TENG is capable of harvesting wind energy in all directions. Its potential utility to be used as a supplementary power source for small electronic devices is verified through various experiments. Based on its compact size, simple design, and ease of manufacturing, the proposed TENG can be used as a low-cost, portable harvester.
In this study, we demonstrated a triboelectric nanogenerator composed of a vertical column, and a cylindrical shell, for omnidirectional wind energy harvesting. With a simple structure using a metal wire, the height between the two triboelectric materials can be maintained, and the Al coated shell can also be electrically connected to the electrode. When the shell is deformed by wind, its Al layer and Polytetrafluoroethylene (PTFE) on the outside of the column can be triboelectrically charged. Thus, wind energy can be harvested through a triboelectric energy conversion mechanism. In particular, due to the high flexibility of the shell, the nanogenerator operates even at wind speeds as low as 1 m/s. Although the output voltage is asymmetrical depending on the wind direction due to the metal wire, it was experimentally confirmed that the device can harvest wind energy from all directions. The measured output RMS power was approximately 15 μW at a wind speed of 6 m/s.
Citations
Citations to this article as recorded by
Wind-powered Triboelectric Nanogenerator Using Contact-separation of Two Cylindrical Structures Jong-An Choi, Jingu Jeong, Mingyu Kang, Soonjae Pyo Journal of the Korean Society for Precision Engineering.2023; 40(12): 939. CrossRef
This paper presents a novel method of designing an efficient locomotion pattern generating algorithm for snake robots by a genetic algorithm (GA). In search and rescue operations in disaster areas, a snake robot requires multiple locomotion patterns. To overcome the complexity of snake robot control, we used a central pattern generator (CPG)-based control method which mimics the motion of a biological snake. GA was used to optimize CPG parameters to maximize locomotion performance. The locomotion performance according to the CPG parameters change was analyzed using the snake robot simulator. The proposed locomotion pattern generation algorithm evolved quickly for the target performance and obtained CPG parameters for the desired locomotion.
Citations
Citations to this article as recorded by
A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term Sung-Jae Kim, Jin-Ho Suh Journal of Korea Robotics Society.2024; 19(2): 139. CrossRef
A Study on the Design of Error-Based Adaptive Robust RBF Neural Network Back-Stepping Controller for 2-DOF Snake Robot’s Head Sung-Jae Kim, Maolin Jin, Jin-Ho Suh IEEE Access.2023; 11: 23146. CrossRef
The objective of this study was to numerically accomplish the cooling performance of an electric vehicle driving motor depending on cooling channel design. Cooling performances of novel cooling channels were compared based on the temperature of coils and cooling channels as well as convection heat transfer coefficient in electric vehicle driving motors. Local axial positions of cooling channels at three different cases were marked for numerical comparison of heat transfer coefficients. Owing to forced convection by the boundary and flow conditions, the heat transfer coefficient of Case 3 at the location where pin-fins were attached in the cooling channel was improved 85.02 and 65.77% compared to Cases 1 and 2, respectively. In Case 3 with pin-fins having 50% of cooling channel length, the maximum temperature of the coil was 4.25% lower than that of Case 2 with pin-fins having 30% of the cooling channel length and 6.98% lower than that of Case 1 without pin-fins in the cooling channel. As a result, pin-fins finally diminished the maximum temperature of coils in Cases 2 and 3. Ultimately, Case 3 showed the best cooling performance for improving vehicle driving durability and developing next-generation electric vehicle cooling system technologies.
A major goal of triboelectric generator is to improve its power output by identifying and optimizing the factors contributing to the harvesting capability. In this study, we developed a double-contact triboelectric nanogenerator (DC-TENG) capable of two contact and separation pairs by adding an additional air-gap layer. The voltage and current output was characterized as a function of the contact speed, position, stroke time (ST), standstill time (SST), and the existence of two air-gaps. The voltage and current output increased non-linearly with decreasing the times. The DC-TENG produced the maximum voltage and current output when the ratio of ST to SST was 7 to 3. Our prototype resembling a pavement block was capable of lighting 144 LED lights by producing a maximum output of 650 V, 25 μA at a pressure of 0.5 kgf/cm².
Citations
Citations to this article as recorded by
Improvement of Dielectric Polarization Characteristic for a Highly Sensitive Flexible Triboelectric Sensor Seo-Yeon So, Sang-Hu Park Journal of the Korean Society for Precision Engineering.2022; 39(5): 357. CrossRef
Power electronic systems have been widely applied in both industrial and domestic applications in the modern society for controlling and converting electrical energy. Due to their characteristics, such as excellent performance, low cost, high reliability, and low weight and size, power semiconductors, including insulated-gate bipolar transistors (IGBTs) dominate the market of power converters. The technical progress and development trend of IGBT for industrial applications are primarily driven by five aspects influenced by each other to an extent, including operating temperature, efficiency, dimension, reliability, and cost. Liquid cooling systems surpass the air cooling systems by supplying heat transfer coefficient, which is several orders of magnitude higher. Thus, using liquid cooling system enables much higher power densities of power modules and more compact converter solutions.
Citations
Citations to this article as recorded by
Experimental Study on Heat Transfer Performance of Microchannel Applied with Manifold Jungmyung Kim, Hoyong Jang, Heesung Park Journal of the Korean Society for Precision Engineering.2022; 39(12): 923. CrossRef
It has been an on-going issue to develop a high voltage motor with high capacity and reliability. In this study, we investigated the effective coil insulator materials in terms of thermal conductivity. To quantify the contribution of the coil insulator material, two different motors with and without the cooling structure were numerically studied. Based on the measured thermal conductivity of six different coil insulators, we have achieved the effectiveness of thermal conductivity. Consequently, the high voltage motor can be developed with the proposed effectiveness of thermal conductivity regarding coil insulator materials. Our study of fundamental material characteristics will be beneficial in enhancing thermal management technology of a high voltage motor.
Citations
Citations to this article as recorded by
Improved thermal conductivity of anticorona insulation paint for high-voltage motor application Xia Zhao, Hui Zhang, Yongxin Sun, Tiandong Zhang Journal of Materials Science: Materials in Electronics.2023;[Epub] CrossRef
In this study, the sensitivity of the power generation effect of the applied linear generator of the energy harvesting suspension system under various input conditions was analyzed. The energy-harvesting suspension generates electric energy through energy harvesting using the road surface vibration energy during driving. Before analyzing the power generation effect, we analyzed the structure of the eight-pole Outer PM (Permanent Magnet) linear generator model using the electromagnetic suspension system to design the efficient generator, PIANO (Process Integration and Design Optimization). The ANSYS MAXWELL program was used to perform electromagnetic simulations of a linear generator model installed inside an energy-harvesting suspension to determine the power generation of the linear generator under various input conditions. The sensitivity of each input variable was compared by comparing the power generation effect of the energy-harvesting suspension device according to road displacement, frequency, and vehicle speed. The sensitivity to the road surface frequency was 1.9451, the sensitivity to the road surface amplitude was 1.0502, and the sensitivity to the vehicle speed was 0.6258. It is confirmed that the maximum sensitivity to the road surface displacement was demonstrated.
Citations
Citations to this article as recorded by
Research on Key Issues of Consistency Analysis of Vehicle Steering Characteristics Yanhua Liu, Xin Guan, Pingping Lu, Rui Guo Chinese Journal of Mechanical Engineering.2021;[Epub] CrossRef
Shock-Absorber Rotary Generator for Automotive Vibration Energy Harvesting Tae Dong Kim, Jin Ho Kim Applied Sciences.2020; 10(18): 6599. CrossRef
A method for evaluating the safety of the corrosion fatigue of a high-pressure (HP) drum for the heat recovery steam generator (HRSG) is presented through a transient thermal stress analysis. To evaluate the corrosion fatigue, European Standard EN 13445-3 is applied to check whether the magnetite protective layer on the water-contacting surface can be preserved during the transient operating conditions: cold start, hot start, warm start, and load change. Static analysis is performed to analyze the stress due to the operating pressure, and transient thermal and structural analyses are performed for the transient operating conditions. As per EN 13445-3, the analyzed maximum and minimum stresses of the transient operating conditions at representative locations are compared with the allowable limits derived from the stress due to the operating pressure. In conclusion, the magnetite protective layer was preserved under the transient operating conditions and the HP drum was found to be safe for the corrosion fatigue. The method of analyzing the thermal stress and evaluating the safety of the corrosion fatigue presented in this research can be applied effectively in the design stage of various unfired pressure vessels exposed to high temperature and high pressure loading.
Citations
Citations to this article as recorded by
Flow-accelerated corrosion in low-pressure evaporator of heat recovery steam generator: Experiments and fluid dynamics simulation Min Ji Song, Woo Cheol Kim, Dong-Jin Kim, Sung-Woo Kim, Soo Yeol Lee Case Studies in Thermal Engineering.2025; 72: 106263. CrossRef
Stress Analysis and Evaluation of Steam Separator of Heat Recovery Steam Generator (HRSG) Boo-Youn Lee Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(4): 23. CrossRef
Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code Boo-Youn Lee Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(4): 150. CrossRef