Zinc sulfide (ZnS) is a widely used material in far-infrared and near-infrared imaging systems due to its exceptional optical transmittance properties. Through a hot isostatic compression process, during manufacturing, ZnS undergoes crystal structure modifications, resulting in increased transmittance across the visible and infrared spectra. However, ZnS exhibits low fracture toughness and irregular crystal orientations, making it prone to brittle fracture during the conventional cutting processes. Such brittleness often leads to surface defects that scatter light, diminishing optical transmittance. Therefore, understanding the conditions conducive to ductile processing is critical and necessitates a thorough brittle fracture analysis. This study introduces a novel quantitative analysis method to determine the occurrence of ductile processing and brittle fracture in ZnS materials after the turning process. To validate the efficacy of this approach, experimental machining was conducted through diamond turning and magnetorheological fluid polishing processes. Subsequently, a comprehensive quantitative assessment of brittle fracture was performed. Additionally, the relationship between brittle fracture and optical transmittance was explored using the proposed analysis method.
We present Error Compensation Software (ECS) which uses a decic polynomial model and three-dimensional surface measurement data for the fabrication of high precision freeform mirrors. ECS is designed based on a graphic user interface that includes an error calculation mechanism and surface distribution maps, and it accepts the Ultrahigh Accurate 3D Profilometer (UA3P) measurement data of the fabricated mirror surface. It exports surface coefficients and tool paths for the Single Point Diamond Turning (SPDT) machine which allows engineers to utilize the software during the compensation process. The ECS is based on Visual C++ and runs on the Windows operating system. The error compensation process with ECS has been applied to the 90 mm diameter aluminum freeform mirrors for usage in view infrared satellites, and the root mean square and peak-to-valley surface errors were reduced from 1.52 to 0.11 μm, and from 7.05 to 1.99 μm, respectively, satisfying the requirement of the infrared camera.
Recently, interest in astronomy has increased internationally, and the technological development of lenses for large space telescopes is progressing. The multi-order diffractive engineered (MODE) lenses can make a large space telescope light and thin. However, because glass lenses are difficult to machine, we have adopted a method of molding at high temperature and high pressure. The STAVAX is commercially available chrome alloy stainless steel, and it is applied as various mold materials. The ultrasonic vibration cutting was adopted for ultra-precision machining because the tool wear is severe when cutting the STAVAX with a diamond tool. To achieve a flat surface for smooth ultrasonic vibration cutting, we performed a precise shape cutting using a CBN tool and confirmed and observed changes in the surface roughness and hardness depending on the cutting conditions. The ultrasonic vibration cutting was performed on the surface of the machine using a CBN tool, and the surface roughness was observed. It was confirmed that the surface roughness was impacted by the surface hardness. The specimens with low surface hardness showed the highest surface roughness at approximately 3 nm.
Citations
Citations to this article as recorded by
Study on Reduction of Pyrolysis Shrinkage in the Carbonization of Furan Precursor by Addition of Vitreous Carbon Powder Young Kyu Kim, Dong-in Hong, Hongmin Kim, Suho Ahn, Seok-Min Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 139. CrossRef
Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han Journal of the Korean Society for Precision Engineering.2024; 41(2): 101. CrossRef
Analysis of Environmental Factors Affecting the Machining Accuracy Young Bok Kim, Wee Sam Lee, June Park, Yeon Hwang, June Key Lee Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(7): 15. CrossRef
Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves microcracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of microcracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.
This study has focused on the effect of ultrasonic vibration table in ELID grinding process of aluminum nitride ceramics. Aluminum nitride ceramics has superior physical and chemical properties and widely used in IC, LSI substrate, package and so on. To achieve the high effective machining of brittle and high strength ceramics as like aluminum nitride, machining method combined ELID grinding and ultrasonic vibration has been adopted in this study. From the experimental results, material removal rate, MRR has been increased maximum 36 percent and spindle resistance has been decreased in using ultrasonic table. Surface roughness of ground surface became a little worse in using ultrasonic table but was somewhat improved in feed direction.
This study has been focused on application of ELID mirror-surface grinding technology for manufacturing single crystal optic sapphire. Single crystal sapphire is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. Mirror-surface machining technology is necessary to use sapphire as optic parts. The ELID grinding system has been set up for machining of the sapphire material. According to the ELID experimental results, it shows that the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.