Lightweight parts are necessary to improve fuel efficiency and reduce environmental impacts in transportation industry. As a result, there has been a shift away from using conventional metals toward using lighter materials with superior mechanical strength. These new materials typically include titanium alloys, nickel alloys, carbon fiber reinforced plastics (CFRPs), and CFRP-metal stacks, which are classified as advanced materials. However, due to the unique properties of these materials (e.g., high strength, low thermal conductivity, carbon fiber-induced hardness, etc.), the cutting process can be difficult. As a result, various manufacturing issues can occur during the cutting process, such as high tool wear, surface quality deterioration, delamination of the CFRP layer, fiber pull-out, and thermal deformation. In this paper, difficult-to-cut advanced materials were reviewed with regard to the influence of the physical properties of the materials and various defect issues that can occur during the mechanical cutting process. In addition, various approaches to improve the cutting process are introduced, including protecting tools with coatings, altering tool features, using high pressure or cryogenic cooling, extending tool life via ultrasonic vibration machining, and improving product quality and machinability.
Citations
Citations to this article as recorded by
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
Abrasive belt grinding force and its influence on surface integrity Yun Huang, Gang Liu, Guijian Xiao, Jiayu Xu Materials and Manufacturing Processes.2023; 38(7): 888. CrossRef
Laser EDM Hybrid Micro Machining of CFRP Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park Journal of the Korean Society for Precision Engineering.2023; 40(2): 99. CrossRef
Ultrasonic Unit Design for Drilling An Mok Jeong Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(6): 409. CrossRef
A study on the process efficiency of laser-assisted machining investigating energy consumption Won-Jung Oh, Choon-Man Lee The International Journal of Advanced Manufacturing Technology.2021; 113(3-4): 867. CrossRef
Development of adhesion force evaluation equipment for nano diamond coated tool using shear method Jinghua Li, SoJin Lee, HyunKyu Kweon Measurement and Control.2021; 54(1-2): 3. CrossRef
Cutting Characteristics and Deformation Analysis for Chord and Side Fitting Parts in an Aircraft Bulkhead Do Hyeog Kim, Yoon Gyo Jung, Yong-Seon Mo, Young Tae Cho Journal of the Korean Society of Manufacturing Technology Engineers.2020; 29(1): 74. CrossRef
Micro Machining of CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung, Jin Sung Park, Ki Hun Kim Journal of the Korean Society for Precision Engineering.2019; 36(9): 783. CrossRef
CFRP (Carbon Fiber Reinforced Plastic) and CFRP-metal stacks have recently been widely used in the aerospace and automobile industries. When CFRP is machined by a brittle fracture mechanism, defect generation behaviors are different from those associated with metal cutting. The machining quality is strongly dependent on the properties of CFRP materials. Therefore, process control for CFRP machining is necessary to minimize the defects of differently manufactured CFRPs. In this study, defects in drilling of CFRP substrates with a variety of fiber directions and resin types are compared with respect to thrust force. An experimental study on material interface detection is carried out to investigate its benefits in process control.