Recently, various attempts have been made to apply the additive manufacturing technology directly to fabricate a product. In this regards, the industry is focusing on the multi-material additive manufacturing technology that can processes multiple materials simultaneously. This study is about the fabrication of a 3-dimensional circuit device (3DCD), based on the multimaterial additive manufacturing technology, which is combination of the material extrusion and the direct writing processes. The multi-material additive manufacturing system was developed based on the commercial multi-head FDM system. In addition, a contact type nozzle for the dispensing of the conductive material in the direct writing process is proposed. The 3-dimensional circuit device in which circuit elements are arranged on several layers was fabricated successfully, based on the presented multi-material additive manufacturing system.
Citations
Citations to this article as recorded by
Application of Image Recognition Technology in Nozzle Cleaning for Material Extrusion Additive Manufacturing Processes Ho-Chan Kim, Yong-Hwan Bae, Hae-Yong Yun, In-Hwan Lee Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(11): 20. CrossRef
Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho Journal of the Korean Society for Precision Engineering.2023; 40(9): 719. CrossRef
Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee Journal of the Korean Society for Precision Engineering.2021; 38(11): 879. CrossRef
Optimization of Manufacturing Conditions of Pressure-Sensitive Ink Based on MWCNTs Sung-Chul Park, In-Hwan Lee, Yong-Hwan Bae, Ho-chan Kim Journal of the Korean Society of Manufacturing Process Engineers.2019; 18(8): 1. CrossRef
GIS(Gas Insulated Switchgear) is used in electric power system, to insure non conductivity, breaking capacity and operating reliability. The commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS were used to simulate dynamic analysis of the closing resistors of the GIS in this paper. To reduce chatter vibration of closing resistors, the motion of moving and fixed parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed parts. The simulated results were compared with experimental results. As a result, chatter vibration of closing resistors of the GIS could be reduced by using the results. These data can be used to determine the spring constant, the damping coefficient and mass of a moving part to reduce chatter vibration when the next model is developed.