Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

14
results for

"Heesung Park"

Article category

Keywords

Publication year

Authors

"Heesung Park"

REGULARs

A Study on Numerical Thermal Design Techniques for High-power Propulsion Motors
Jaehun Choi, Chiwon Park, Heesung Park
J. Korean Soc. Precis. Eng. 2025;42(11):893-900.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.036

Propulsion motors are vital components in marine propulsion systems and industrial machinery, where high torque and operational reliability are paramount. During operation, high-power propulsion motors generate considerable heat, which can adversely affect efficiency, durability, and stability. Therefore, an effective thermal management system is necessary to maintain optimal performance and ensure long-term reliability. Cooling technologies, such as water jackets, are commonly employed to regulate temperature distribution, prevent localized overheating, and preserve insulation integrity under high-power conditions. This paper examines the cooling performance of water jackets for high-power propulsion motors through numerical analysis. We evaluated the effects of three different cooling pipe locations and varying coolant flow rates on thermal balance and cooling efficiency. Additionally, we analyzed temperature variations in the windings and key heat-generating components to determine if a specific cooling flow rate and pipe configuration can effectively keep the winding insulation (Class H) within its 180oC limit. The findings of this study highlight the significance of optimized cooling system design and contribute to the development of efficient thermal management technologies, ultimately enhancing motor reliability, operational stability, and energy efficiency.

  • 19 View
  • 1 Download
A Numerical Investigation on Heat Transfer Enhancement of a Dual-impeller Heat Exchanger for Electro-optical Tracking System Cooling via System Structural Modification
Sungbin Lee, Manyul Jeon, Hyungpil Park, Donghyeok Park, Hoonhyuk Park, Jongin Bae, Heesung Park
J. Korean Soc. Precis. Eng. 2025;42(10):871-877.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.071

This study presents a dual-impeller air-cooled heat exchanger aimed at improving thermal management in electro-optical tracking systems operating under high power density. Two geometric modifications were introduced to enhance flow characteristics and heat transfer performance: the curvature of the center plate and the integration of a pin-fin structure at the outlet. Through numerical simulation, the improved model demonstrated more efficient internal flow compared to the original model, achieved through enhanced inflow characteristics and reduced flow separation. The pin-fin structures induced localized turbulence and recirculation zones, contributing to an increased thermal exchange surface area and longer effective heat transfer time. Consequently, the outlet temperature of the internal system decreased by an average of 1.4°C across various rotational speeds, resulting in a 5.9% increase in heat exchanger efficiency compared to the original model. Overall, this study shows that structural enhancements in heat exchanger design can significantly improve the cooling performance of high-power electronic systems, suggesting practical applicability for advanced thermal management solutions.

  • 8 View
  • 0 Download
Articles
A Study on Numerical Analysis for Determination of Glass Molding Process Conditions for Glass Lenses
Jaehun Choi, Sajan Tamang, Heesung Park
J. Korean Soc. Precis. Eng. 2024;41(3):207-214.
Published online March 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.136
The Glass Molding Process (GMP) produces large quantities of glass optical parts and provides the advantages of high molding accuracy, short production cycle, low cost, and little pollution. Developments in different sectors, such as cameras and telescopes, are prompting studies on the design of aspherical optical components. Modeling heat transfer and deformation at high temperatures are crucial aspects of studying glass because its properties are significantly influenced by temperature-induced phase changes. In this study, temperature changes and geometric deviations of lenses were studied with respect to heating, pressing, and cooling times and the heat capacity of the heater used. A 3D model was designed for the heating, pressing, and cooling steps, and heat transfer was subjected to numerical analysis considering the specific heat of glass and the temperature dependence of thermal conductivity. Lens molding temperature conditions were then analyzed with the heat capacity of the lens molding heating system. Lens molding conditions were derived by analyzing lens temperatures with respect to heating and cooling capacities at each process step.

Citations

Citations to this article as recorded by  Crossref logo
  • Precision glass aspherical lens manufacturing by compression molding: a review
    Xiaohua Liu, Jian Zhou, Bo Tao, Yang Shu, Zexin Feng, Shih-Chi Chen, Yingying Zhang, Allen Y. Yi
    Light: Advanced Manufacturing.2026; 7: 1.     CrossRef
  • A Study on Temperature and Stress Distribution in a Lens under Multi-Stage Cooling Conditions in Progressive Glass Molding Processes
    Ji Hyun Hong, Jeong Taek Hong, Dong Yean Jung, Young Bok Kim, Keun Park, Chang Yong Park
    Journal of the Korean Society for Precision Engineering.2025; 42(2): 157.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Thermal Runaway Characteristics Induced by Heat Abuse Conditions in 18650 Li-ion Batteries
Jungmyung Kim, Heesung Park
J. Korean Soc. Precis. Eng. 2023;40(10):821-827.
Published online October 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.145
This study aimed to characterize the mechanism of thermal runaway phenomenon in lithium-ion batteries, which represent secondary cells among energy storage devices. Thermal runaway reaction was induced by heating 18650 cells with 5%, 40%, and 80% state of charge (SOC). We divided the thermal runaway of the battery into three stages and discussed the physical measurements that distinguish each stage. We also provided a visual comparison and thermal image of the characterized exhaust gases in all stages. The state of charge and the amount of heat generated by thermal runaway were proportional, and in the third stage of thermal runaway, where the highest mass transfer occurred, 40% of SOC released gas for 13 seconds and 80% of SOC emitted gas and flame for 3 seconds. In addition, a temperature and voltage measurement method that can predict the thermal runaway phenomenon of a battery is presented.

Citations

Citations to this article as recorded by  Crossref logo
  • An Experimental Study on the Thermal Runaway Characteristics of Single and Multiple Lithium-Ion Cells
    Ho-Sik Han, Gyu-Hwan Cho, Hong-Seok Yun
    Fire Science and Engineering.2025; 39(5): 13.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
Experimental Study on Heat Transfer Performance of Microchannel Applied with Manifold
Jungmyung Kim, Hoyong Jang, Heesung Park
J. Korean Soc. Precis. Eng. 2022;39(12):923-929.
Published online December 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.077
In this paper, theoretical and experimental studies were conducted on the cooling performance of a microchannel heat dissipation device with a manifold layer added. By adding 500 μm wide microchannels and manifold flow fields, the rheological properties of the cooling fluid were enhanced to improve the heat transfer performance. The size of the microchannel used for cooling was 40 × 40 × 5 mm, and was evaluated under a heat flux of 12.5-43.75 W/㎠ and a flow rate of 0.3-1.1 L /min conditions. As a result of the experiment, in the case of a microchannel heat sink of 500 μm compared to the existing heat sink, cooling was successfully performed under a heat flux condition of about four times

Citations

Citations to this article as recorded by  Crossref logo
  • Thermal Design of Heatsink for M.2 NVMe SSD Reliability
    Chan Ho Kim, Jinsung Rho, Joong Bae Kim
    Journal of the Korean Society for Precision Engineering.2023; 40(5): 389.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
A Numerical Investigation of Heat Transfer Characteristics with Varying Film Cooling Hole Shapes for Gas Turbine Blade Cooling
Chan Hyeok Park, Sajan Tamang, Hwabhin Kwon, Jaemun Choi, Heesung Park
J. Korean Soc. Precis. Eng. 2022;39(6):443-450.
Published online June 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.018
Recently, film cooling has been continuously studied to increase the efficiency of gas turbines. A turbine inlet temperature increase occurs as a way to improve the efficiency. However, it is essential to improve the cooling performance of the blade surface because of the melting point of the part. In this paper, a side hole shape wherein a general cylinder hole and two auxiliary holes are combined, is proposed to improve the film cooling efficiency, and the blowing ratio was set to 0.4, 0.8, 1.2, and 2.0. When side hole was applied, the vortex interference at the hole entrance occurred less than that of the cylinder hole. That is, the flow rate of the coolant adsorbed to the surface increased to improve the cooling performance. In conclusion, compared to the cylinder hole, the cooling efficiency of the shape to which the side hole was applied was excellent, and in particular, the average area cooling efficiency with spanwisely designed side holes improved by 83%.
  • 4 View
  • 0 Download
Design and Performance Analysis for 3 MW Waste Pressure Steam Turbine Using 2D and 3D Numerical Simulation
Hwabhin Kwon, Jong Yun Jung, Joon Seob Kim, Ye Lim Jung, Heesung Park
J. Korean Soc. Precis. Eng. 2021;38(6):455-460.
Published online June 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.115
In this study, the design of an axial steam turbine that is installed for a using waste pressure. Airfoils and flow fields are designed based on 1D and 2D meridional plane design techniques. The 3D geometry of the steam turbine is designed considering the 1D and 2D design parameters. The turbine is designed with an average radius of 287 mm and rotates at 8,300 re v/min. The inlet boundary condition of the steam turbine was applied in consideration of the installation condition of the waste pressure turbine. When analyzing the results of the numerical simulation, the performance of the steam turbine is predicted with an output of 3.5 MW and isentropic efficiency of 88.4%. The choked flow in the nozzle throat and the flow separation in the suction side on the blades are predicted numerically, and it is expected to be a study to determine the cause of the reduction in efficiency of the steam turbine.
  • 4 View
  • 0 Download
Effect of Liquid Coolant Channel Configuration on Cooling Performance of High Power Electronics
Jaehyun Park, Jaemun Choi, Changwoo Han, Heesung Park
J. Korean Soc. Precis. Eng. 2021;38(1):29-33.
Published online January 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.051
Power electronic systems have been widely applied in both industrial and domestic applications in the modern society for controlling and converting electrical energy. Due to their characteristics, such as excellent performance, low cost, high reliability, and low weight and size, power semiconductors, including insulated-gate bipolar transistors (IGBTs) dominate the market of power converters. The technical progress and development trend of IGBT for industrial applications are primarily driven by five aspects influenced by each other to an extent, including operating temperature, efficiency, dimension, reliability, and cost. Liquid cooling systems surpass the air cooling systems by supplying heat transfer coefficient, which is several orders of magnitude higher. Thus, using liquid cooling system enables much higher power densities of power modules and more compact converter solutions.

Citations

Citations to this article as recorded by  Crossref logo
  • Experimental Study on Heat Transfer Performance of Microchannel Applied with Manifold
    Jungmyung Kim, Hoyong Jang, Heesung Park
    Journal of the Korean Society for Precision Engineering.2022; 39(12): 923.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
Pt-Ru Alloy Catalysts with Doped CeO₂ Interlayer for Methane Conversion
Min Jong Kil, Heesung Park, Hyong June Kim, Byung Chan Yang, Jemin Lee, Ye Seul Kim, Hojoong Sun, Cheolwoo Bong, Moon Soo Bak, Jihwan An
J. Korean Soc. Precis. Eng. 2020;37(10):781-786.
Published online October 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.047
The necessity of converting toxic gas has arisen from the usage of perfluorinated compounds (PFCs), volatile organic compounds (VOCs), and hydrocarbon gases in the semiconductor process and laboratories. Also, recent strong regulations on the emission gas from vehicles also present the need for the highly efficient chemical conversion of toxic emission gases. In this study, we present the fabrication of platinum and ruthenium alloy metal catalysts on the yttria-stabilized zirconia balls, and the application of the metal catalysts to the catalytic converter for methane oxidation. The platinum and ruthenium alloy metal catalysts showed better performance than the platinum catalyst, i.e., 75% increase in the methane conversion efficiency at 500℃. Such improvement seems to be because of the facile oxygen supply from the ruthenium surface. Also, the platinum and ruthenium alloy catalysts with the doped cerium oxide interlayer showed better thermal stability than the platinum and ruthenium alloy metal catalysts, possibly because of the stronger bonding between the metal and oxide support.
  • 5 View
  • 0 Download
Development of Cooling Performance Evaluation System for Semiconductor Device in High Voltage Direct Current Converter
Jaemun Choi, Jaehyun Park, Heesung Park
J. Korean Soc. Precis. Eng. 2020;37(10):761-764.
Published online October 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.026
The high voltage direct current (HVDC) device has been used to transmit electrical power with an advanced technology of semiconductors. The sustainable energy generation technologies of solar power and windmills are demanding that the HVDCs have high performance and reliability. In this regard, the cooling performance of the HVDC becomes a significant research topic because the temperature increase affects the operation of the device. The evaluation system to assess the cooling performance has been developed and is proposed in this paper. The experimental apparatus is presented in detail. Our experiments have shown the accuracy of flow rates, pressure drops, and the temperatures in the desired measurement points. We have successfully developed an evaluation system of the cooling performance of the HVDC device which has 2.48 kW of heat dissipation.
  • 4 View
  • 0 Download
Numerical Investigation on the Cooling Performance of Energy Storage System according to Type of HVAC
Hwabhin Kwon, Heesung Park
J. Korean Soc. Precis. Eng. 2020;37(9):685-690.
Published online September 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.027
In this paper, we analyze the cooling performance according to the HVAC types installed in the energy storage system (ESS). Batteries in ESS have the disadvantages of decomposition and catching fire at high temperatures, so it is important to control the temperature. For the purpose of cooling the batteries in ESS, we designed the cooling systems with stand and ceiling type HVAC. Both the cooling systems for ESS are analyzed numerically for the comparison of cooling performance. The heat dissipation of the battery is 1979.3 W/m3 on 1 C-Rate discharge, and the cooling flow rate and temperature are 6.375 kg/s and 17℃, respectively. The maximum temperature of batteries with stand and ceiling type cooling systems are calculated to be 65.85 and 60.5℃, respectively. In conclusion, cooling systems with ceiling type HVAC are more efficient than cooling systems with stand type HVAC.
  • 5 View
  • 0 Download
Effect of Thermal Conductivity of Coil Insulator Material on the Temperature Variation of High Voltage Motor
Jaehyun Park, Seung Ho Paek, Hyun Woo Lee, Heesung Park
J. Korean Soc. Precis. Eng. 2020;37(5):355-360.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.119
It has been an on-going issue to develop a high voltage motor with high capacity and reliability. In this study, we investigated the effective coil insulator materials in terms of thermal conductivity. To quantify the contribution of the coil insulator material, two different motors with and without the cooling structure were numerically studied. Based on the measured thermal conductivity of six different coil insulators, we have achieved the effectiveness of thermal conductivity. Consequently, the high voltage motor can be developed with the proposed effectiveness of thermal conductivity regarding coil insulator materials. Our study of fundamental material characteristics will be beneficial in enhancing thermal management technology of a high voltage motor.

Citations

Citations to this article as recorded by  Crossref logo
  • Improved thermal conductivity of anticorona insulation paint for high-voltage motor application
    Xia Zhao, Hui Zhang, Yongxin Sun, Tiandong Zhang
    Journal of Materials Science: Materials in Electronics.2023;[Epub]     CrossRef
  • 6 View
  • 0 Download
  • Crossref
A Numerical Study on the Cooling Efficiency of the Gas Turbine Vane with the Film Cooling Hole Shape
Jaehun Choi, Hwabhin Kwon, Heesung Park
J. Korean Soc. Precis. Eng. 2020;37(2):107-113.
Published online February 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.094
Research on advanced cooling system design is significant in achieving a high turbine inlet temperature in the gas turbine industry. The higher turbine inlet temperature of the gas turbine increases thermal efficiency. However, it also aggravates the gas turbine deterioration, lifespan, and efficiency. In this study, a numerical model is developed for simulating the cooling performance of the gas turbine vane with the turbine inlet temperature of 1528 K. The impact of the coolant air flow rate and hole-shape were investigated. The expanded hole shape had better cooling performance than the general cylindrical shape, and showed higher cooling efficiency. We suggest that there is a relationship between the shape of the film cooling holes and the cooling air flow rate that achieves the desired cooling effectiveness.
  • 6 View
  • 0 Download
Thermal Characteristics of 600 W Brushless DC Motor under Axial Loading Condition
Hwabhin Kwon, Won-Sik Lee, Gyu-Tak Kim, Heesung Park
J. Korean Soc. Precis. Eng. 2016;33(12):999-1005.
Published online December 1, 2016
A brushless direct current (BLDC) motor electronically performs rectification without brushes. It therefore does not have the typical mechanical friction contacts between the brushes and commutators. The BLDC motor has the advantages of high speed, low noise, and electronic noise reduction in addition to high durability and reliability. Therefore, it is mainly used in electric vehicles and electric equipment. However, iron loss and copper loss due to long-term use induce temperature increases in the motor, which reduces its performance and life. The temperatures of the stator and permanent magnet are predicted to be 62.3℃ and 32.2℃, respectively. This study shows the enhanced temperature distribution in a 600 W BLDC motor using unsteady and threedimensional (3D) numerical investigations validated with experimental data.
  • 2 View
  • 0 Download