In this study, polyacetal plates were machined with an indexable drill (Ø18mm) to measure the dimensional error of holes according to the cutting conditions and investigate the influencing factors to obtain precision holes. Cutting velocity, feed, and depth of cut were selected as experimental variables, analyzed using design of experiment, and optimal cutting conditions were investigated. Cutting velocity and feed were significant factors affecting hole accuracy, whereas depth of cut had little effect. The factor with the greatest influence on hole accuracy was cutting velocity, and the dimensional error of the holes tended to increase as the cutting velocity increased. Dimensional error tended to decrease as feed increased. In addition, the interaction effect between cutting velocity and feed and cutting velocity and depth of cut were significant. In this experiment, the optimal cutting velocity, feed, and depth of cut needed to minimize the dimensional error of holes were 100 m/min, 0.15 mm/rev, and 2 mm, respectively.