Finite element analysis model was fabricated to confirm stress concentration phenomenon occurring in the wafer edge region in the CMP process, and it was confirmed if it corresponds to the measurement result of the actual pressure sensor. First, contact stress distribution at the edge of the wafer was calculated by the finite element analysis model in which material properties and boundary conditions were set up. As a result, an engineering contact stress distribution profile was obtained. Next, the pressure generated in the edge region of the wafer was measured using a pressure sensor that detects resistance change of the polymer. To compare with the result of the finite element analysis, the non-dimensional sensor signal unit was converted into the pressure unit, and correlation between the analysis and measurement results was obtained. As a result, the finite element analysis result, the actual pressure measurement, and the trend of the results were more than 90%. The results show that the finite element analysis model produced and modified in this study is consistent with the actual behavior trend of the components.
Citations
Citations to this article as recorded by
Variation of Pad Temperature Distribution by Slurry Supply Conditions Jinuk Choi, Seonho Jeong, Kyeongwoo Jeong, Haedo Jeong Journal of the Korean Society for Precision Engineering.2020; 37(12): 873. CrossRef
The arbitrarily-bended pipe is widely used in a heat exchanger system. Thus, the pipe bending process has important role in performance and productivity of heat exchanger system. The purpose of this study is to investigate the bending process for manufacturing of sound pipe. And, the spring-back effect and the variation of pipe thickness should be controlled effectively. The change of spring-back ratio and the thickness variation of pipe according to the change of bending radius, bending angle and pipe thickness are analyzed by FEM analysis. The analytic results are compared with the experimental data, accordingly the results show good agreement. The method of the analysis can be applied for manufacturing of precision bended pipe.
This study has been focused on the development of automatic bottle air rinser. It is designed to rinse clean empty bottles prior to filling. The bottles are automatically indexed beneath an air nozzle that has both a clean airjet and vacuum source. The bottle is first given a burst of clean air to loosen any particles from the wall of the bottle. A vacuum sequence follows which removes all particulates into a self contained filter unit. In order to the provide the desired function, analysis is carried out by FEM simulation using FLUENT and CATIA software. The final results of analysis are applied to the design of automatic bottle rinser and the machine is successfully developed.