In the printed circuit board (PCB) manufacturing industry, the yield is an important management factor as it significantly affects the product cost and quality. However, in real situations, it is difficult to ensure a high yield in a manufacturing process, because the products are manufactured through numerous nanoscale manufacturing operations. Thus, for improving the yield, it is necessary to analyze the key process parameters and equipment parameters that result in a low yield. In this study, critical equipment parameters that affect the yield were extracted through a mutual analysis of the equipment parameters (x) and process parameters (y) in the plastic ball grid array (PBGA) manufacturing process. To this end, the study uses the correlation coefficient to apply the heuristic algorithm that extracts critical parameters that keep the redundancy among the equipment parameters to a minimum and exert maximum impact on the critical process parameters. Additionally, by using the general regression neural network technique, the effects of the critical equipment parameters on the process parameters were confirmed. The test results were applied to the PBGA production line and an improvement in the yield was confirmed.
The Smart Factory Equipment Engineering System collects and monitors necessary information in real-time. While putting the product into the equipment, operation conditions are lowered through a Recipe Management System. The working conditions are set by Run-to-Run a system for real-time detection and control through Fault Detection Classification function. In this study, the smart factory equipment system associated with the entire system is proposed by defining and integrating the necessary equipment management functions from a smart factory’s point of view. To do this, detailed analysis and process improvement on products, processes, and production line equipment were conducted and implemented in the smart factory equipment engineering system. The models proposed in this paper have been implemented to the production site of BGA-PCB. It has been confirmed that the models have resulted in significant change, and have qualitative and quantitative impacts on the working methods of equipment. Typically, data collection time, data entry time, and manual writing sheets were greatly reduced.