Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Hyunseop Lee"

Article category

Keywords

Publication year

Authors

"Hyunseop Lee"

Articles
A Study on the Wear Phenomena of PLA and PETG Materials for 3D Printing in Non-lubricated Condition
Yonsang Cho, Hyunseop Lee
J. Korean Soc. Precis. Eng. 2024;41(2):145-151.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.119
With the recent development of 3D printing technology, various 3D printing materials have been developed and used. To utilize 3D-printed products with mechanical parts, studies on friction and wear characteristics according to relative motion between materials are required. However, tribology studies on 3D-printed materials are limited compared to those of the existing materials for mechanical parts. In this study, the frictional and wear characteristics are identified through a reciprocating wear test in non lubricated conditions between the Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) printed in the Fused Deposition Modeling (FDM) method. In the wear test between the same materials, the friction coefficient and wear rate were higher in the PLA than in the PETG, and PLA was deposited on the block due to high frictional heat. In the wear test of the PLA block and PETG bump, the wear of the PLA block decreased compared to the wear test between the same materials, but the wear of the PETG bump tended to increase. Therefore, it seems that the 3D-printed PETG may be more advantageous in terms of friction and wear than 3D-printed PLA during relative movement in a non lubricating condition.

Citations

Citations to this article as recorded by  Crossref logo
  • Tribological Properties of Fused Deposition Modeling-Printed Polylactic Acid and PLA-CF: Extrusion Temperature and Internal Structure
    Paweł Zawadzki, Justyna Rybarczyk, Adam Patalas, Natalia Wierzbicka, Remigiusz Łabudzki, Băilă Diana, Fodchuk Igor, Bonilla Mirian
    Journal of Tribology.2026;[Epub]     CrossRef
  • Artificial Intelligence Technologies and Applications in Additive Manufacturing
    Selim Ahamed Shah, In Hwan Lee, Hochan Kim
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Effect of Frictional Characteristics on Surface Roughness and Glossiness in Polishing of ABS-Like Resin
Jungyu Son, Hyunseop Lee
J. Korean Soc. Precis. Eng. 2020;37(11):797-802.
Published online November 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.087
With the development of 3D printing technology, its applications are expanding. However, 3D printed parts present a challenge in achieving high-quality surface roughness because of stair stepping problems. With the recent application of 3D printing in electronics and the visibility of flow in microfluidic systems, high-quality surface roughness is needed. Chemical mechanical polishing (CMP), one of semiconductor fabrication processes, has the longest planarization length in terms of productivity among existing planarization methods. In this study, we investigate friction characteristics of polishing of ABSLike resin material printed by the Stereolithography Apparatus (SLA). At the polishing of ABS-Like resin, the friction force has a high value at the beginning of polishing, but it stabilizes as processing progresses because of the effect of waviness on the printed material. The surface roughness (Sa and Sz) reduction and the glossiness of ABS-Like resins after polishing appear to be related to the reduction of the Shore D hardness resulting from the rise in the polishing process temperature caused by friction during polishing.
  • 5 View
  • 0 Download
The Effect of Pad Groove Density on CMP Characteristics
Kihyun Park, Jaewoo Jung, Hyunseop Lee, Heondeok Seo, Seokhun Jeong, Sangjik Lee, Haedo Jeong
J. Korean Soc. Precis. Eng. 2005;22(8):27-33.
Published online August 1, 2005
Polishing pads play an important role in chemical mechanical polishing(CMP) which has recently been recognized at the most effective method to achieve global planarization. In this paper, we have investigated CMP characteristics as a change of groove density of polishing pads. The parameter(Kn) is proposed to estimate groove density of pad. The Kn is defined as groove area divided by pitch area. As the groove density value increased, removal rate increased to some point and then gradually saturated in case of increasing the groove density excessively. In addition Within wafer non-uniformity(WIWNU) worse as groove density increased excessively, although WIWNU improved as groove density increased. Also the uniformity of temperature of pad surface decreased as the groove density increased. It was because that the cooling effect increased as groove density increased. In other words, increasing the groove density which means the apparent contact area of pad has influence on amount of discharge of slurry during polishing process.
  • 2 View
  • 0 Download