The cutting force signal has traditionally served as a reference in conducting the monitoring studies using a variety of sensors to identify the cutting phenomena. There have been continuing studies on how to monitor the cutting force indirectly. It is because it is easier to access when considering an application to the actual machining site. This paper discusses a method of indirectly monitoring the cutting force using the feed drive current to analyze the change in the trend of the cutting force over the lapse of machining time. This enables the analysis of the cutting force by separating it in the X and Y axes of the machining plane. To increase the discrimination of the signal related to the actual cutting phenomenon from the feed drive current signal, a bandpass filter was applied based on the tooth passing frequency. The relationship between the feed drive current and the cutting force analyzed from the machining signal of actual machining conditions was applied to convert the feed drive current into the cutting force. It has been verified through experiments that the cutting load can be estimated with markedly high accuracy as a physical quantity of force from the feed motor current.
Citations
Citations to this article as recorded by
Tool Wear Monitoring System based on Real-Time Cutting Coefficient Identification Young Jae Choi, Ki Hyeong Song, Jae Hyeok Kim, Gu Seon Kang Journal of the Korean Society for Precision Engineering.2022; 39(12): 891. CrossRef