With the evolution of robotic technology, the expansion of operations into challenging environments underscores the growing need for effective teleoperation systems. In such an environment, robots or machines can improve the efficiency and safety of tasks by delivering more detailed and accurate information to workers through virtual reality (VR). Current teleoperation systems have limitations in providing a comprehensive understanding of the work environment. Accordingly, this study proposes a technology that utilizes VR to provide a high level of telepresence to workers and enable intuitive control. To achieve this, we introduce a pregenerated computer-assisted design model for static objects beyond the viewing area of RGB-D cameras and a method to update the point cloud of the target objects, which are dynamic objects, in real-time. By incorporating this information, we created a 3D visual map and delivered it to the operator in real-time through HMD, enabling the operator to clearly recognize the robot’s current location and surroundings. In addition, we introduced hand motion recognition through HMD viewpoints and VR controllers, allowing the operator to intuitively control the robot. These techniques can improve the efficiency and safety of remote work.
It is known that the low-intensity sound stimulation really affect to grow the cell. The cellular growth mechanism, however, does not been clearly identified even the effect on the low-intensity sound stimulation. The purpose of this study is to investigate the effect of low-intensity sound stimulation on the alveolar UC-MSC proliferation. Before the low-intensity sound stimulation is applied, the UC-MSC are cultured for 24 hours to facilitate their attachments. The cells are divided into two groups. And each was exposed to a medium with or without the low-intensity ultrasound stimulation at 71㏈ intensity level. The UC-MSC are again divided into three treatment groups of group 1, 2, and 3 and exposed to a frequency at 50㎐, 100㎐, and 1000㎐, respectively. In the results, it is investigated that the growth rates of UC-MSC for the stimulated groups were higher than those of control groups. In 1000㎐ frequency, the number of UC-MSC cell is significantly higher than control groups (p>0.05). We would put the hypothesis that the cell growth could be enhanced by an appropriate low-intensity sound stimulation
Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of span worm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W -EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.