This study outlines a structural design process for a cylindrical superelastic shape memory alloy (SMA) ligation clip. Although polymer-based clips are widely used, they face challenges related to long-term stability and limited radiopacity, highlighting the necessity for metal clips. By systematically modifying two key design variables—the hole offset ratio and the cut-off ratio—the proposed clip effectively reduces excessive stress concentration and enhances superelastic behavior. Finite element analyses indicate that the stress deviation in the two cross-sectional deformation regions decreased by 83.9%, and the martensitic transformation remained confined to a small area, demonstrating robust strain recovery within the superelastic range. In conclusion, the improved SMA clip successfully withstood internal pressures exceeding 15 psi without leakage, showcasing its superior ligation performance and potential for durable, reliable use in minimally invasive surgical procedures.