The goal of this paper is to investigate the effects of out-of-plane deposition angle on product characteristics of a UV photo-curing process. Specimens are manufactured from a commercialized UV photo-curing machine, the NOBEL V1.0. The influence of the out-of-plane deposition angle of the specimen on surface characteristics, including morphology of the sloped surface, pick-to-pick distance of convex region, and roughness of the sloped surface, is examined via the observation of the sloped surface. In addition, the influence of the radius of curvature of the specimen on the surface roughness of the sloped surface is evaluated. The effects of the out-of-plane deposition angle on impact strength of specimens are investigated via Izod impact experiments. Finally, we discuss the influence of the out-of-plane deposition angle on failure characteristics of specimens for impact loads.
A powder spreading phenomenon is one of disadvantageous characteristics of the powder bed fusion process using electron beams. The powder spreading phenomenon can be controlled using a pre-heating process of metallic powders. The aim of this paper was to investigate the preheating process of Stellite21 powder using electron beams. Powder spreading experiments were performed to examine the influence of process parameters on the spreading behaviors of Stellite21 powder. Powder heating experiments were carried to investigate the effects of the focusing current of the electron beam on the quality of the heated region. Using the results of the powder spreading and heating experiments, an appropriate combination of process parameters was obtained. The pre-heating experiment of Stellite21 was performed using the estimated combination of process parameters. The results of preheating experiments showed that the preheated Stelllite21 layer with desired characteristics can be created when the estimated combination of process parameters is applied.