Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Jeong Min Lee"

Article category

Keywords

Publication year

Authors

"Jeong Min Lee"

Articles
Prediction of Low-Cycle Fatigue Life of In738LC Using Plastic Strain Energy Density
Sung Uk Wee, Chang Sung Seok, Jae Mean Koo, Jeong Min Lee
J. Korean Soc. Precis. Eng. 2019;36(4):401-406.
Published online April 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.4.401
Gas turbine blades are important parts of a power plant, and thus, it is necessary to be able to predict the low-cycle fatigue life of the blades. In this study, a low-cycle fatigue test of In738LC, which is used primarily in gas turbine blade manufacture, was performed at various high temperatures (750oC, 800oC, and 850oC). From the test results, the stressstrain curve and the stress-strain hysteresis loop were obtained. It was established that In738LC has no strain hardening or softening. The life prediction equations for low-cycle fatigue were derived using the Coffin-Manson equation and the energy model. In conclusion, one equation for predicting the life low-cycle fatigue was obtained using the energy level with temperature as the varying factor.
  • 5 View
  • 0 Download
Flow Analysis of Pressure Generator for Limited Slip Differential
Sung Uk Wee, Jae Mean Koo, Jeong Min Lee, Chang Sung Seok
J. Korean Soc. Precis. Eng. 2018;35(11):1079-1084.
Published online November 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.11.1079
The differential gear distributes the power from the transmission shaft to both wheel axles and automatically ensures rotational difference to maintain the speed difference between the two axles. However, when the vehicle travels on a slippery road surface, a slip in the wheel induces improper transmission of the driving force. Therefore, the limited slip differential limits the function of the differential gear by transmitting the driving force to the normal wheel without the slip. The hydraulic differential limiting device is based on the principle that the fluid between the inner and the outer rotors is compressed by the rotation of the trochoidal gear, and the compressed fluid moves to the cylinder to generate sufficient pressure in the side pinion gear to limit the differential. In this study, the pressure is predicted by variation in viscosity and rotational speed through flow analysis.
  • 5 View
  • 0 Download
Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate
Jeong Min Lee, Dae Hoon Ko, Kyung Hun Lee, Chan Joo Lee, Byung Min Kim
J. Korean Soc. Precis. Eng. 2013;30(8):815-823.
Published online August 1, 2013
The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.
  • 4 View
  • 0 Download