Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Jeong-Min Lee"

Article category

Keywords

Publication year

Authors

"Jeong-Min Lee"

Articles
Performance Evaluation and Analysis on Protective Coating Applied to HPT Heat Shield of GT24 Gas Turbine
Junghan Yun, Jeong-Min Lee, Chang-Sung Seok, Sukhwan Kwon, Byoungkwan Yun, Byungmoon Chang
J. Korean Soc. Precis. Eng. 2019;36(1):53-57.
Published online January 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.1.53
Gas turbine, the core equipment of the power plant, is capable of rapid starting operation and has less carbon dioxide emission than coal power plant. So it has the advantage of being eco- friendly. In order to increase the efficiency of these gas turbines, the turbine inlet temperature has steadily increased and to ensure the safety of the gas turbine, means for protecting parts exposed to high temperatures have also been developed. Protective coating technology is one of them, which plays the role of lowering the temperature of the base metal and preventing oxidation and corrosion. In this paper, thermal fatigue test simulating the operation environment was conducted using the Amdry 9951 protective coating powder applied to the HPT Heat Shield for the Alstom GT 24 gas turbine and the performance before and after the thermal fatigue test was evaluated and examined by adhesive strength test and SEM (EDS) analysis.
  • 26 View
  • 0 Download
Evaluation on Thermal Gradient Fatigue Characteristics of Thermal Barrier Coating through Finite Element Analysis
Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Sunguk Wee, Youngseok Kim, Jae-Mean Koo, Chang-Sung Seok
J. Korean Soc. Precis. Eng. 2017;34(7):479-483.
Published online July 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.7.479
A gas turbine is a power plant unit that converts thermal energy into rotational energy by rotating a blade using hightemperature and high-pressure combustion gas. A gas turbine blade is directly exposed to a high-temperature flame. Various studies have aimed to improve the durability of the blade in harsh conditions. One proposes coating the blade with a thermal barrier to protect it from the flame, using a ceramic material with better thermal insulation. Another proposes using internal cooling, by creating an air flow path inside the blade to lower its temperature. Because both these techniques create a thermal gradient in the cross section of the blade, they amplify the difference in thermal expansion, thereby producing thermal stress in the blade and the thermal barrier coating. This study investigates the internal cooling effect on thermal gradient fatigue by using finite element analysis.

Citations

Citations to this article as recorded by  Crossref logo
  • An interaction integral method for calculating heat flux intensity factor with the XFEM
    Huachao Deng, Bo Yan, Honghong Su, Xiaomin Zhang, Xin Lv
    International Journal of Thermal Sciences.2019; 136: 379.     CrossRef
  • 37 View
  • 0 Download
  • Crossref
Evaluation of Effect on Thermal Fatigue Life Considering TGO Growth
Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Chang-Seo Oh, Kyu Chul Han, Young-Ze Lee, Jae-Mean Koo, Chang-Sung Seok
J. Korean Soc. Precis. Eng. 2014;31(12):1155-1159.
Published online December 1, 2014
Thermal barrier coating (TBC) which is used to protect the substrate of gas turbine is exposed to high temperature environment. Because of high temperature environment, thermally grown oxide (TGO) is grown at the interface of thermal barrier coating in operation of gas turbine. The growth of TGO critically affects to durability of TBC, so the evaluation about durability of TBC with TGOs of various thickness is needed. In this research, TGO was inserted by aging of TBC specimen to evaluate the effect of the TGO growth. Then thickness of TGO was defined by microstructure analysis, and thermal fatigue test was performed with these aging specimens. Finally, the relation between thermal fatigue life and the TGO growth according to aging time was obtained.
  • 12 View
  • 0 Download