Autonomous robots are commonly operated on rough roads. Thus, it is essential to predict their dynamic characteristics. Even though it is possible to use real hardware to acquire a robot’s dynamic characteristics, this requires a significant amount of time and cost. Therefore, a real-time remote driving simulator must be developed to reduce these risks. Most real-time simulators employ physics engines, which are calculated using simple functional expressions based on particles. However, in this case, there is a limit to reflecting the dynamic characteristics of actual robots. In this study, a multi-body dynamic model of a robot was established. MATLAB Simulink was used to connect the vehicle model with the joystick and calculate user input signals. The PID control system determines the driving torque of the robot to satisfy the calculated signal. Gain value optimization is performed to enable real-time control. This study can be available to analyze the traversability.