Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Jin Woo Kim"

Article category

Keywords

Publication year

Authors

"Jin Woo Kim"

Articles
A Computational Fluid Dynamics Analysis on Mist Behaviors in Nanofluid Minimum Quantity Lubrication Milling Process
Young Chang Kim, Jin Woo Kim, Jung Sub Kim, Sang Won Lee
J. Korean Soc. Precis. Eng. 2017;34(5):301-306.
Published online May 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.5.301
This paper discusses flow characteristics of nanofluid minimum quantity lubrication (MQL) in the milling process of a titanium alloy by usingnumerical analysis. A mist of nanofluids including nanodiamond and hexagonal boron nitride (hBN) particles is sprayed into a tool-workpiece interface with conditions varying by spray angle and flow rate. The milling. Are experimentally measured and minimized by the determined optimal spray angle and flow rate. The subsequent numerical analysis based on a computational fluid dynamics (CFD) approach is conducted to calculate the penetration ratios of the nanofluid droplets into a tool. At the experimentally obtained optimal spray angle and flow rate of the nanofluids’ mist, the calculated ratio of penetration is highest and, therefore, the optimal spray conditions of the nanofluids are numerically validated.
  • 4 View
  • 0 Download
Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication
Young Chang Kim, Jin Woo Kim, Jung Sub Kim, Sang Won Lee
J. Korean Soc. Precis. Eng. 2017;34(4):253-258.
Published online April 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.4.253
This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.
  • 5 View
  • 0 Download
Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication
Jin Woo Kim, Jung Sub Kim, Sang Won Lee
J. Korean Soc. Precis. Eng. 2017;34(3):185-189.
Published online March 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.3.185
Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

Citations

Citations to this article as recorded by  Crossref logo
  • Current research trends in coolant application for machining Ti-6Al-4V alloy: a state-of-the-art review
    Prianka B. Zaman, N. R. Dhar
    Advances in Materials and Processing Technologies.2024; : 1.     CrossRef
  • Comprehensive analysis of cutting temperature, tool wear, surface integrity and tribological properties in sustainable milling of Ti6Al4V alloy: LN2, nanofluid and hybrid machining
    Emine Şirin, Çağrı Vakkas Yıldırım, Şenol Şirin, Turgay Kıvak, Murat Sarıkaya
    Journal of Manufacturing Processes.2024; 131: 1360.     CrossRef
  • Recent advancements in nano-lubrication strategies for machining processes considering their health and environmental impacts
    Kishan Zadafiya, Prassan Shah, Alborz Shokrani, Navneet Khanna
    Journal of Manufacturing Processes.2021; 68: 481.     CrossRef
  • Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation
    Dae-Gyoun Park, Tae-Ho Kim, Eon-Chan Jeon
    Journal of the Korean Society of Manufacturing Process Engineers.2018; 17(6): 68.     CrossRef
  • Friction and Wear Characteristics of Surface-Modified Titanium Alloy for Metal-on-Metal Hip Joint Bearing
    Hyeon-hwa Lee, Sungcheul Lee, Jong-Kweon Park, Minyang Yang
    International Journal of Precision Engineering and Manufacturing.2018; 19(6): 917.     CrossRef
  • 7 View
  • 1 Download
  • Crossref
Measurement of 3D Shape of Fastener using Camera and Slit Laser
Jin Woo Kim, Tae Hun Song, Jong Eun Ha
J. Korean Soc. Precis. Eng. 2015;32(6):537-542.
Published online June 1, 2015
The measurement of 3D shape is important in inspecting the quality of product. In this paper, we present a 3D shape measurement system of fastener using a camera and a slit laser. Calibration structure with slits is used in the extrinsic calibration of the camera and laser. The pose of the camera and laser is computed under the same world coordinate system in the calibration structure. Reflection of laser light on the metal surface causes many difficulties in the robust detection of them on image. We overcome this difficulty by using color and dynamic programming. Motor stage is used to rotate the fastener to recover the whole 3D shape of the surface of it.
  • 3 View
  • 0 Download