In this paper, a study on the effectiveness of micro-peening was accomplished for improvement of fatigue characteristics for reduction gear of manned and unmanned aircraft. The Almen saturation curve was obtained by various peening injection pressure supplied from a commercial air jet peening machine. The effective micro-peening process condition was adopted as five bar. The four points rotary bending fatigue test was conducted by using test specimen made of AISI alloy that was carburized based on AMS standard in this work. From the fatigue test result, the fracture life of specimen peened by nozzle pressure with five bar and six bar was higher than the un-peened specimen by approximately 323 percent and 146 percent respectively. However, the fracture life of specimen peened by the nozzle pressure with six bar was lower by approximately 221 percent than the peened specimen by five bar. For this reason, the peening nozzle pressure with five bar was decided as the optimum micro-peening condition. Effectiveness of micro-peening was validated and this micropeening technique will be used for real manned and unmanned aircraft gear parts or other durability mechanical parts.
Citations
Citations to this article as recorded by
A Review of Recent Advances in Design Optimization of Gearbox Zhen Qin, Yu-Ting Wu, Sung-Ki Lyu International Journal of Precision Engineering and Manufacturing.2018; 19(11): 1753. CrossRef
Electro-Mechanical Actuator installed on the aircraft plays a key role in an aircraft’s flight control through flight control computer. Reliable prediction of the actuator is important for the aircraft. To estimate the lifetime of a product, it is necessary to test full target life. However, it is very difficult to perform it due to the long life time of actuator but short period of development time with increasing cost. Therefore, accelerated life test has been used to reduce the test time for various reasons such as reducing product’s development cycle and cost. In this paper, to predict the lifetime of the actuator, we analyzed the flight profile of aircraft and adapted the method of accelerated life test in order to accelerate failure modes that might occur under user conditions. We also set up an endurance test equipment for validating the demanded lifetime of an actuator and performed accelerated life test.