Chemical mechanical polishing achieves surface planarity through combined mechanical and chemical means. The role of the chemical reaction is very important in a metal CMP like aluminum. The slurry used in aluminum CMP typically consists of oxidizers, a chelating agent, corrosion inhibitors, and abrasives. This study investigates the effect of oxalic acid as a chelating agent for aluminum CMP with H2O2. To study the chemical effect of the chelating agent, the two methods of a polishing experiment and an electrochemical analysis were used. Lastly, it was confirmed that the optimum concentration of oxalic acid significantly improved the removal rate and surface roughness of aluminum.
Citations
Citations to this article as recorded by
Hybrid CMP Slurry Supply System Using Ionization and Atomization Hoseong Jo, Da Sol Lee, Seon Ho Jeong, Hyun Seop Lee, Hae Do Jeong Applied Sciences.2021; 11(5): 2217. CrossRef
Improvement of Interface Diffusion in Cu thin films using SiN/CoWB Passivation Layer Jung Woong Kim, Sean Jhin Yoon, Hyun Chan Kim, Youngmin Yun, Jaehwan Kim Journal of the Korean Society for Precision Engineering.2018; 35(12): 1163. CrossRef
Improvement of Interface Diffusion in Cu thin films using SiN/CoWB Passivation Layer Jung Woong Kim, Sean Jhin Yoon, Hyun Chan Kim, Youngmin Yun, Jaehwan Kim Journal of the Korean Society for Precision Engineering.2018; 35(12): 1163. CrossRef
The chemical mechanical planarization (CMP) process combines the chemical effect of slurry with the mechanical effect of abrasive (slurry)-wafer-pads The slurry delivery system has a notable effect on polishing results, because the slurry distribution is changed by the supply method. Thus, the investigation of slurry pumps and nozzles with regard to the slurry delivery system becomes important. This paper investigated the effect of a centrifugal slurry pump on a spray nozzle system in terms of uniform slurry supply under a rotating copper (Cu) wafer, based on experimental results and computational fluid dynamics (CFD). In conventional tools, the slurry is unevenly and discontinuously supplied to the pad, due to a pulsed flow caused by the peristaltic pump and distributed in a narrow area by the tube nozzle. Adopting the proposed slurry delivery system provides a higher uniformity and lowered shear stress than usual methods. Therefore, the newly developed slurry delivery system can improve the CMP performance.