The present research investigates the wear analysis on SCM440 and SUS410 alloys for a high- load roller chain. In this wear analysis test, we concentrate on two wear factors: wear loss and coefficient of friction. For the wear test, reciprocating and block on ling analyses were used to assess the variation of wear characteristics. The applied normal loads were fixed at 10, 30, and 50 N in all tests. The test results showed that the Rockwell hardness average value of the SCM440 alloy is near 29.6 HRC, and the coefficient of friction and the wear loss are 0.62 and 3.8 mg, respectively. In addition, wear behavior was evaluated using lubricating oil.
Citations
Citations to this article as recorded by
Study on Improvement of Catheter Tip Forming Process according to Plating Characteristics in Mold Han Chang Lee, Jinhyuk Jung, Gyu Ik Lee, Woojin Kim, Gyu Man Kim, Bong Gu Lee Journal of the Korean Society for Precision Engineering.2022; 39(9): 711. CrossRef
This research analyzes bucket elevator roller chain pins by finite element (FE) analysis and static structural analysis for a lightweight pin design. The stress distribution of light weight roller chain pins under static load is analyzed for safety factors and damping effect. The results show that the stress distribution is higher on the plate than on the bush pin. In order to compare experimental and FE analysis results, a light weight design approach was used to produce a prototype base pin. Because the inner diameter of the pin was different, the impact damping effect was most appropriate when the inner diameter was 34.05 ㎜, and it is used as basic research data on the impact of the roller chain and sprocket.
Citations
Citations to this article as recorded by
Suitability of Selected Diagnostic Factors for Assessing the Technical Condition of the Working Systems of Bucket Elevators Piotr Sokolski Energies.2025; 18(7): 1610. CrossRef
Prediction of the Remaining Useful Life of L-holder for Continuous Ship Unloader Seung-Hun Lee, Dong-Woo Lee, Jung-Il Song Journal of the Korean Society for Precision Engineering.2023; 40(8): 647. CrossRef
Development of lightweight fiber-reinforced composite pins for heavy load long pitch roller chains Chang-Uk Kim, Jung-il Song Composite Structures.2020; 236: 111839. CrossRef
Evaluation of Critical Crack Length of Tension Bar for Continuous Ship Uploader Keontae Park, Jang Young Chung, Chang-Sung Seok, Jung-Il Song Journal of the Korean Society for Precision Engineering.2018; 35(12): 1169. CrossRef
An Evaluation of Wear in High Load Long Pitch Roller Chain Chang Uk Kim, Jang-Young Chung, Jung Il Song Journal of the Korean Society for Precision Engineering.2017; 34(9): 647. CrossRef
Air brake valves are widely used in automotive braking systems and the Korean automobile industry depends on importing them. Therefore, we should develop the technical expertise for their domestic production. In this study, air brake valves were analyzed that can be used in a variety of automobiles. Computational fluid dynamics analysis, static structural analysis, and hyper-elastic analysis were carried out. Before production of an air brake valve system, the performance of different parts has to be evaluated, for instance by using finite element analysis. The structural stability of the product can be determined using static dynamics. The compression behavior of the O-ring is predictable by nonlinear hyper elastic analysis, although errors are possible due to one-way loading. This simulation study can both save time and reduce costs compared to the development of experimental prototypes.
In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.
Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.