The surface of railway wheels running on rails is subject to damage due to rail and frictional wear, damage from wheel tread and flange wear caused by curved track operations, and damage from flats and concave wear due to braking friction heat from brake shoes. Although the surface of wheels is regularly reprofiled through periodic grinding cycles, damage occurring to the wheel surface during operation can lead to deteriorated ride quality and potential failure due to crack propagation. In domestic railway components technical standards, wheel integrity is mandated to be demonstrated through non-destructive testing. To prevent and detect failures caused by damage occurring on railway wheels, it is necessary to develop methods that could detect and evaluate surface damage. The present study investigated a method for detecting and evaluating surface damage on railway wheels using electromagnetic imaging. Results demonstrated that defects with a length of 10 mm, a width of 0.8 to 1.0 mm, and a depth of 0.2 to 1.0 mm could be adequately detected using electromagnetic scan images.
Damage to the units related to driving and running of the railway vehicle may cause an inevitable accident due to defects and malfunctions in operation. In order to prevent such an accident, a non-destructive diagnostic technology that detects the damage is required. Previous researchers have researched and developed a monitoring system of the infrared thermography method to diagnose the condition of the railway vehicle driving and driving units. A system for monitoring running of the railway vehicle and temperature condition of the drive unit at a vehicle speed of 30 to 100 km/h was constructed, and a study on its applicability was conducted. In this study, a system for diagnosing an abnormal condition of the driving and running units while the vehicle is running with an infrared thermography diagnostic system was installed in the depot and operation route, and evaluation of the abnormal condition of the driving and running units was performed. The results show that the diagnosis system using infrared thermography can be used to identify abnormal conditions in the driving and running units of a railway vehicle. The diagnosis system can effectively inspect the normal and abnormal conditions in operation of a railway vehicle.
Rolling contact fatigue (RCF) and wear caused by rolling contact between the wheel and rail are inevitable problems in railway systems. An increase in axle load or the slip ratio causes excessive wear. However, RCF and wear do not act independently, but one influences the other. Wheel and rail materials and manufacturing quality have a considerable influence on the formation of RCF and the ensuing wear. Therefore, the mechanical properties of the wheel and rail are important factors for reducing RCF and wear on the contact surface. This paper presents a comparative evaluation of the wheel and rail used in the Korean industry for high speed trains and conventional rails with respect to their fatigue and fracture behavior. A series of tests such as uniaxial tensile tests, fracture toughness tests, and fatigue crack growth tests were carried out at both room temperature and low temperatures.
Citations
Citations to this article as recorded by
Estimating the Initial Crack Size Distribution of Thermite Welds Joint in Continuous Welded Rail Jae Yeon Lee, Yeun Chul Park, Ji Hyeon Kim, Jun Hyeok Kwon Journal of Korean Society of Steel Construction.2024; 36(6): 451. CrossRef
The repeated thermal load on the railway wheel for tread brakes has been remarkably tightened due to increase in speed of trains and increase of operation frequency. As overheating and cooling between the wheel and brake block are continuously repeated, the railway wheel is damaged. To understand the process, thermal cracks for wheel tread can be experimentally reproduced under the condition of cyclic frictional heat from brake blocks, through bench experiments using a railway wheel. Thermal cracks generated in the wheel were investigated to observe the cracks’ initiation processes using full-scale brake dynamometer. Results show that as braking energy and braking temperature continued to accumulate, a hot spot appeared on the wheel surface and 2 mm of thermal crack occurred in the wheel rim.
During the past few years, several incidents of freight car wheel failure during operation have occurred due to fatigue crack and overheating from braking. Tensile residual stress on the wheel tread creates an environment conducive to the formation of thermal cracks that may threaten the safety of train operations. It is important to investigate the residual stress on wheels in order to prevent derailment. In the present paper, the residual stress on wheels is measured using the x-ray diffraction system and the residual stress is analyzed using FEM. The result shows that the residual stress on the wheel rim is lower than that on the wheel tread center and the stress on over-braked wheels changes from compression residual stress to tensile residual stress.
Rolling contact fatigue and wear on rails are inevitable in railway operations due to excessive wheel–rail contact stress. The wear is influenced by vehicle speed, contact pressure, environmental conditions, and many other factors. Speeding on a curved track causes many problems such as wear on the gauge of the rail and rolling contact fatigue. Managing environmental conditions can reduce problems on the wheel and rail interface. In this study, the wear characteristics of wheel and rail materials were investigated by twin-disc testing using various parameters. The results of the wear test indicated that the wear rate under dry conditions was larger than that under wet conditions. We found that contact fatigue damage occurred on the rail in dry conditions, however, the surface of the specimen under water remained smooth. Also, the friction coefficient in dry conditions was larger than in wet conditions.
There is a large interest to find reliable and automatic methods for crack detection and quantification in the railway bogie frame. The non-destructive inspection of railway bogie frame has been performed by ultrasonic and magnetic particle testing in general inspection. The magnetic particle method has been utilized in the defect inspection of the bogie frame but the grinding process is required before inspection and the dust is developed resulting from the processing. The objective of this paper is to apply the inspection method of bogie frame using infra-red thermography. The infra-red thermography system using the excitation of eddy current was performed for the defect evaluation of weld specimen inserted artificial defects. The result shows that the infra-red thermography method can detect the surface and inner defects in weld specimen for bogie frame.
Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.
Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.
Upon investigation of the damaged wheels for high speed train it was determined that the damage was caused by rolling contact fatigue during operation of train. The major problems that railway vehicle system using wheel-rail has to face during operation of railway vehicle are rolling contact fatigue, cracks in wheels, cracks in rails and wheel-rail profile wear. If these deficiencies are not controlled at early stages the huge economical problems due to unexpected maintenance cost in railway vehicle can be happened. Also, If the accurate knowledge of contact conditions between wheel and rail can be evaluated, the damage of wheel can be prevented and the maintenance operation can save money. This paper presents the applicability of electro-magnetic technique to the detection and sizing of defects in wheel. Under the condition of continuous rolling contact fatigue the damage of wheel has continuously monitored using the applied sensor. It was shown that the usefulness of the applied sensor was verified by twin disc test and the measured damaged sizes showed good agreement with the damaged sizes estimated by electromagnetic technique.
Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.
The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.
For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90㎞/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center flat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.
When a vehicle is running, wheel is generating vertical and lateral force on the rail, in addition to load of vehicle, through a complicated set of motions. The derailment coefficient refers to the ratio of lateral force to vertical force(wheel load), and if the value exceeds a certain level, a wheel climbs or jumps over the rail. That's why the value is used as a criterion for running safety. Derailment coefficient of rolling stocks alters according to shape of rail track. I measured threedimensional angular velocity and acceleration to use 3D Motion Tracker. Test result, derailment coefficient of rolling stocks and shape of rail track examined closely that have fixed relation. Specially, was proved that roll motion has the close coupling relation.
Railway wheel and axle is the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluate of wheelset strength and safety has been desired. Fracture mechanics characteristics such as dynamic fracture toughness, fatigue threshold and charpy impact energy with respect to the tread, plate, disc hole of wheel and the surface of press fitted axle are evaluated. This paper describes the difference of fracture toughness, fatigue crack growth and fatigue threshold at the locations of wheel and axle. The results show that the dynamic fracture toughness, KID, is obviously lower than static fracture toughness, KIC and the fracture mechanics characteristics are difference to the location of wheel tread and hole.